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ABSTRACT. The international gravitational wave observation network detects gravita-
tional waves from compact binary mergers. However, the detectors are frequently affected
by nonstationary and non-Gaussian noise artifacts called “glitches.” Glitches reduce de-
tector sensitivity and complicate the identification of true gravitational wave signals. As
these detectors undergo upgrades to enhance sensitivity, the resulting glitches may exhibit
new or altered morphologies. Identifying these variations may provide insight into the en-
vironmental or instrumental origin of the glitch. This study proposed glitch classification
in gravitational wave interferometers during different observation periods via transfer
learning. Specifically, we utilized a pretrained model with Observation 1 & Observation 2
glitches and retrained it with new Observation 3a glitches. This approach enhanced the
generalization and adaptability of the model for new observation runs and reduced the
training costs. To ensure interpretability, we employed feature visualization methods us-
ing Score-weighted class activation mapping to explain the classification mechanism for
glitches and uniform manifold approximation and projection to visualize their distribu-
tion. We demonstrated that continuous utilization of the model during observation runs
resulted in both efficient learning and interpretability, and further indicated the tracking
of the evolving nature of glitch morphologies over periods. The proposed approach will
help improve future frameworks for glitch analysis and long-term strategies in gravita-
tional wave data processing.

Keywords: gravitational wave data analysis, transfer learning, noise classification, con-
volutional neural networks, Score-CAM, UMAP
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1 Introduction The international gravitational wave observation network [1] compris-
ing LIGO, Virgo, and KAGRA has detected more than 200 gravitational wave events from
the mergers of binary black holes or neutron stars. A simultaneous observation of gravita-
tional and electromagnetic waves was achieved in the neutron star merger event [2]. The
following observation runs were performed during specific periods: Observation 1 (O1:
September 2015 — January 2016), Observation 2 (O2: November 2016 — August 2017),
and Observation 3a (O3a: April 2019 — November 2019). Gravitational wave observations
are expected to contribute to further advancements in astronomy and physics.

Gravitational waves were observed as a perturbation of the space-time metric, and
their distortion was insignificant. State-of-the-art instrumentation was installed in the
detector to detect such a weak signal. However, nonstationary and non-Gaussian noise,
known as “glitch” noise, often happens during observations. These glitches possess various
morphological features originating from both instrumental and environmental factors,
including ground vibrations, pendulum control signals, and laser fluctuations. Glitches
affect the detector sensitivity, continuous operation, and quality of gravitational wave
signals.

The Gravity Spy project analyzed various glitches in LIGO detectors during O1&02
observation runs and identified 22 types of glitches [3, 4]. Two new glitches were identified
and classified using convolutional neural networks (CNNs) during O3a [5]. Subsequent
studies have demonstrated that transfer learning is effective for glitch classification by
employing models pretrained on ImageNet [6] or on previous observation runs [7]. Because
gravitational wave detectors have been upgraded continuously to improve their sensitivity,
different observation periods may generate glitches with distinct morphological features.
However, for glitch types that did not change significantly in morphology during the
observation periods, a transfer learning approach would suffice for classification. The
reuse of network weights obtained from the training of previous observations may be
effective for future glitch classification tasks, both in terms of computational cost and
classification performance.

In this study, we investigated the effectiveness of transfer learning for glitch datasets
with different morphological features, specifically between the O1&02 and O3a datasets.
We used CNNs, whose architectures are based on previous studies on glitch classifica-
tion [3, 5], and applied a model pretrained on the O1&02 dataset and transfer learning to
the O3a dataset. Additionally, we incorporated Score-weighted class activation mapping
(Score-CAM) [8] to explain the classification and uniform manifold approximation and
projection (UMAP) [9] for the visualization of glitch clustering. This made the analysis
more accessible and interpretable. We evaluated the classification performance on the O3a
dataset using the transfer learning model, and further investigated glitch morphologies
based on their UMAP clustering during the O1&02 and O3a observation periods.

The remainder of this paper is organized as follows: In Sec. 2, the dataset and analysis
method employed in this study are introduced & briefly reviewed. The dataset prepro-
cessing method is elucidated in this section. The results and discussion are presented in
Sec. 3. Finally, Sec. 4 provides a summary of the study.

2 Method In this section, we provide an overview of the glitch dataset and its pre-
processing, including the analysis framework, which includes CNNs, Score-CAM, and
UMAP.

2.1 Dataset The Gravity Spy project [3] provides a time—frequency spectrogram image
of glitches for O1&02. Glitch images for O3a [5] were also provided. Glitch images were
recorded with four different time-windows: 0.5, 1.0, 2.0, and 4.0 s, typically focusing the
frequency range from 8 to 2048 Hz. We selected O3a glitch images evaluated with a
machine learning confidence of 0.9 or higher. This threshold value was equivalent to that
employed in [10]. The dataset distribution of each label is listed in Table 1. Notably,
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TABLE 1. Dataset distributions for each class.

Label 01&02 dataset amount O3a dataset amount
1080Lines 328 20
1400Ripples 232 261
Air_Compressor 58 116
Blip 1869 3737
Chirp 66 14
Extremely_Loud 454 908
Helix 279 33
Koi_Fish 830 1660
Light_Modulation 573 111
Low_Frequency_Burst 657 1314
Low_Frequency_Lines 453 906
No_Glitch 181 362
None_of_the_Above 88 24
Paired_Doves 27 41
Power_Line 453 572
Repeating_Blips 285 478
Scattered_Light 459 1218
Scratchy 354 490
Tomte 116 832
Violin_Mode 472 256
Wandering_Line 44 32
Whistle 305 610
Blip_Low_Frequency 0 1260
Fast_Scattering 0 627
total amount 8583 15882

although the dataset exhibits an imbalanced distribution across labels, the degree of
imbalance is comparable to that used in datasets from previous studies [11, 12]. The
01&02 dataset contains 22 classes, whereas the O3a dataset contains 24 classes, including
new glitches such as “Blip_low_frequency” and “fast_scattering.”

Our preprocessed dataset is based on a “merged-view” image from previous studies
[13, 14], which is constructed by joining four time-window images into a 2 x 2 grid as
illustrated in Figure 1. This preprocessing was applied to both O1&02 and O3a datasets.
Transfer learning was applied to fine-tune the pretrained model on the O3a dataset after
training on the O1&02 dataset. We investigated the generalization capability of the
proposed model for glitch classification in different observational runs. The ratios of the
training, validation, and test datasets were 70%, 15%, and 15%, respectively.

2.2 Architecture Figure 1 shows the proposed CNN architecture, which is typically se-
lected for glitch classification, including [12, 13]. The proposed architecture comprises con-
volutional layers with rectified linear unit (ReLU) activation functions and max-pooling
layers for feature learning, followed by a fully connected layer using features as inputs
to classify glitches. The model was configured to classify glitches into 22 classes during
training on the O1&02 dataset. Subsequently, transfer learning was applied to adapt the
pretrained model to the O3a dataset, which comprised 24 classes, by replacing its fully
connected layer (initially outputting 22 classes) with a new layer that outputs 24 classes.

The training was conducted under the following conditions: The cross-entropy loss of
a loss function. A learning rate of 0.1 with the Adadelta [15] optimizer, batch size of 60,
and 20 epochs. The computational environment was the PyTorch library [16] with three
graphics processing units, including NVIDIA GeForce RTX3060 and RTX3090.

2.3 Score-CAM Class activation mapping (CAM) visually explains the features of
a CNN and highlights the regions of the input image that make the most significant
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FIGURE 1. Proposed architecture overview. (z X x) is the kernel size of
a convolutional layer and a max-pooling layer, and (y) denotes the output
feature size. After training the O1&02 dataset, transfer learning was ap-
plied to the pretrained model using the O3a dataset. The Score-CAM and
UMAP are applied to the last max-pooling layer of the model.

contributions to the predictions of the model. Grad-CAM[17], which is a notable CAM
method, may not provide an appropriate visualization when a vanishing gradient problem
emerges. Score-weighted CAM (Score-CAM) [8] addresses this issue by avoiding the use
of gradients for computation. The Score-CAM algorithm comprises the following steps:

1. Feature Map Extraction Let [ denote the index of the convolutional layer, and

k denote the index of a feature map within this layer. The outputs of the [-th
convolutional layer of the network are obtained as a set of feature maps, represented
as {AL}, where Al denotes the k-th feature map in the I-th layer.

. Upsampling and Normalization of Feature Maps Each feature map A is
upsampled to match the size of the input image and normalized to the range of 0-1.
This normalized feature map is denoted as H}.

. Calculation of Feature Map Importance A masked image X o H! is constructed
by applying the Hadamard product of X and the normalized feature map H,, for a
given input image X. The output score f(X o H}) of the network for the masked
image is computed. Additionally, a baseline image X,, which typically represents
a reference input (such as an all-zero image), is used to calculate its corresponding
score f(X;). The importance of the k-th feature map is then defined as the difference
between these scores:

C(A}) = f(X 0 Hy) — f(X),

where f(-) represents the output function of the network.

. Generation of the Score-CAM Mabp For target class ¢, Score-CAM map L§, .. cam
is generated as a weighted sum of feature maps A!, where weight af corresponds to
importance score C(A}). The map is computed as follows:

gcore—CAM = ReLU (Z a2A§€> )
k
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where af = C'(A}) and ReLU(+) represents the ReLU function, ensuring non-negative
values in the output.

2.4 Dimensionality Reduction and Feature Visualization using UMAP Di-
mension reduction methods are typically applied for feature extraction and visualization.
Principal component analysis is a linear dimensionality reduction method that excels
when the input data have a linear structure. UMAP [9] is a nonlinear dimensionality
reduction method that is effective when the input data have a more complex structure.
Compared with ¢-SNE [18], which is another nonlinear dimensionality reduction method,
the computational cost of UMAP is less than that of t-SNE.

The UMAP algorithm computes an undirected weighted k-nearest neighbor graph based
on input data, typically using the Euclidean distance metric. Subsequently, the symmetric
weighted adjacency matrix W = (w;;(k)) is computed from the graph, where the indices
of ¢ and j correspond to the i-th and j-th data points in the dataset, respectively. Let
v;;(6) denote the distance in the embedded space of the i-th and j-th data points, where 0
represents a tuning parameter related to cluster compactness. A larger value of § results
in an expansive cluster structure in the resulting embedding. In UMAP, when parameters
k and ¢ are determined, the embedding is obtained by minimizing the following fuzzy
cross-entropy:

Conne(k.8) = 3 {6 1o (528 )+ (1= w o (=222 b )

oy v;5(9)

For further details, see [9]. In this study, we set k& = 7 as the number of neighbors and
= 0.02.

3 Results and Discussion We present the classification results of the O3a dataset us-
ing a pretrained model of the O1&02 dataset. We compared the saliency maps generated
by Score-CAM to investigate how the model recognized the O3a glitch. Furthermore, we
examined the feature space distribution of the O1&02 and O3a datasets using UMAP.

3.1 Glitch Classification The training curve converged at epoch 20 during the O1&02
dataset training, and its accuracy was 98.1% using the test dataset, which is comparable
to the 96.9% accuracy reported in [13] using the O1&02 dataset. Therefore, the model at
epoch 20 was selected as the pretrained model. The O3a dataset training using the pre-
trained model converged at approximately 8 epochs. By contrast, the model trained from
scratch converged at approximately the 18th epoch with an accuracy of 96.0% using test
dataset. Such an early convergence indicates the benefit of reduced training costs when
employing transfer learning. A model at 8 epochs was selected for evaluation testing, and
its confusion matrix obtained using the O3a test dataset is shown in Fig. 2; its accuracy
was 97.6%.

Although 16 out of 24 classes achieved recalls exceeding 95%, low recall classes were
observed, such as “Chirp,” “Paired_Doves,” and “Wandering_Line,” likely owing to their
limited number in the training dataset. As the outcomes of Score-CAM and UMAP affect
the classification results of the model, we will discuss these analyses only for classes with
a recall exceeding 80%.

3.2 Saliency Map for New O3a Glitches The Score-CAM highlights the regions
within an image that contribute to its classification. This provides a visualization of the
features that affect the decisions of a model. We focused on the new O3a glitches to
investigate the process of their classification by the model in transfer learning as follows:

e “Blip_Low_Frequency” is characterized by a lower maximum frequency and is mor-
phologically similar to the existing “Blip” glitch. Fig. 3 (A) shows the representative
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FiGUure 2. Confusion matrix using the O3a test dataset. The accuracy is
97.6%. Each row of the confusion matrix is normalized.

saliency map of “Blip_Low_Frequency,” and Fig. 3 (B) shows that of “Blip” for com-
parison. These maps show that “Blip_Low_Frequency” appears as a more rounded
and larger structure than “Blip;” this suggests that the model accurately captures
the features of “Blip_Low_Frequency.”

e “Fast_Scattering” is characterized by a shorter duration, typically from 0.25 to 0.30 s,
compared with those of traditional long-duration glitches, “Scattered_Light.” In the
saliency maps shown in Fig. 4 (A) and (B), “Fast_Scattering” is visualized as a band-
like structure, whereas that of “Scattered_Light” appears more as a line, accurately
reflecting the morphological features of this glitch.

3.3 Glitch Clustering using UMAP The final layer of the proposed transfer learning
model, which was used for saliency map generation in Sec. 3.2, has a high-dimensional
tensor. We can visualize the clustering of the glitches by embedding such a tensor into a
three-dimensional (3D) space using UMAP.

3.3.1 Highlighting by Classification Labels Figure. 5 depicts the visualization of the
01&02 and O3a glitches using UMAP. This plot includes the glitch clustering and its
saliency map. An input to Score-CAM and UMAP is the same feature as the final layer
of the proposed model. Glitch features are highlighted by their label color in 3D space,
and clustering appears to be well-separated according to the labels. Such a well-separated
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(A) Blip low frequency. (B) Blip.

FIGURE 3. Three-column layout displays the input image (left), the
saliency map (center), and the overlaid image (right). (A) and (B) cor-
respond to “Blip_Low_Frequency” and “Blip” from the O3a test dataset,
respectively.

(A) Fast scattering. (B) Scattered light.

FIGURE 4. (A) and (B) plotted as the three-column layout correspond to
“Fast_Scattering” and “Scattered_Light” from the O3a test dataset.

structure for each label indicates easier classification and is consistent with the accuracy
of the confusion matrix shown in Fig .2.

3.8.2  Highlighting by Observation Periods The O1&02 and O3 datasets comprise glitches
collected from different periods. Because gravitational wave detectors are upgraded daily
to improve their detection sensitivity, we investigated whether the characteristics of these
glitches changed over time. We focused on “Blip” and “Koi_Fish” as representative
glitches from the O1&02 and O3 datasets, highlighting them based on different observa-
tion periods, as illustrated in Fig. 6. We confirmed that each glitch was closely clustered
and the other glitches were not separated between the O1&02 and O3a datasets. These
morphological stabilities of the glitches may suggest that their sources — whether instru-
mental or environmental — did not significantly change during the detector upgrades.
These UMAP results could render the analysis more comprehensive and insightful, po-
tentially providing additional information on the physical origins of the glitches.

Conversely, “Helix” and “Light_Modulation” were clearly separated between the O1& 02
and O3a datasets, as depicted in Fig. 7. Regarding the saliency maps shown in Fig. 7 (A),
the “Helix” in O3a exhibits stronger amplitudes than those in O1&02. A similar result
is observed for “Light_Modulation” in Fig. 7 (B), where long-duration signals are present
in the low-frequency band in O3a.

Consequently, different observation periods may generate variations in glitch features.
One possible factor that could explain why the machine learning model recognized them as
separate clusters is that the sensitivity of O3a was better than that of the O1&O2 period.
This improved the visibility of the glitches and changed their appearance. However,
increasing the dataset size and investigating different observation periods is necessary.

In this section, we demonstrated the effectiveness of saliency maps for evaluating the
rationale behind model predictions, even for transfer learning. Furthermore, we con-
firmed that the O1&02 and O3a datasets had a well-separated structure using UMAP
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F1GURE 5. Glitch clustering in 3D space is performed by UMAP, where the
input features for UMAP are extracted from the last max-pooling layer of
the transfer learning model. All of the O1&02 and O3a glitches are plotted

in this space. A saliency map of a glitch on an arbitrary coordinate is also
displayed.

visualization, and some of the glitches were separated owing to the different observation
periods.

Blip (01&02)
Blip (O3a)

Koi_Fish (01&02)
Koi_Fish (O3a)

FiGure 6. Glitch clustering on a 3D space, focusing on “Blip” and
“Koi_Fish,” shows that glitches labeled O1&02 and O3a tend to cluster
in relatively close regions. Notably, plotted colors differ from Fig. 5 for
comparison between the O1&02 and O3a glitches.



ICIC EXPRESS LETTERS, VOL.X, NO.X, 20XX 9

(B) Light_Modulation.

FIGURE 7. Glitch clustering on a 3D space, focusing on (A)“Helix” and
(B) “Light_Modulation,” shows that glitches labeled O1&02 and O3a tend
to cluster in relatively far regions. Notably, plotted colors differ from Fig. 5
for comparison between the O1&02 and O3a glitches.

4 Summary In this study, we proposed an explainability framework for glitch noise
classification during different observation periods. The pretrained model on the O1& 02
dataset achieved a high accuracy value in transfer learning with O3a. The newly detected
glitch in O3a was reasonable, with interpretable results discussed using both UMAP and
Score-CAM. Furthermore, our analysis suggested that glitch morphology changed over
different periods.

These visualizations promote understanding of the decision-making process in deep
learning models. This ensures the validity of the predictions of the model. The observed
variations in the morphology of the glitch may provide information to understand their
origins, whether instrumental or environmental sources.

In this study, the O1 and O2 periods were conventionally treated as one observation
period. However, this approach may overlook potential morphological changes in glitches
during these two periods. Future analyses should consider using shorter periods to capture
more dynamic variations in glitch morphology.

Future work will involve verifying the effectiveness of the pretrained model on larger and
different period datasets, such as O3b [5] and O4 [10], by comparing its performance with
those of models trained from scratch on these datasets and demonstrating its applicability.
Moreover, we intend to track the evolution of glitch morphology over longer durations and
with shorter observation periods.
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