GWADW2025 (Cocoa Beach, Florida, May 18-23, 2025)

Preparing KAGRA for the Era of Multi-Messenger Astronomy

Yuta Michimura for the KAGRA Collaboration RESCEU, University of Tokyo michimura@resceu.s.u-tokyo.ac.jp

The LIGO-Virgo-KAGRA collaboration has detected over 300 events so far, but multi-messenger observations have only been realized once, with GW170817. GW190425, which is believed to have originated from a binary neutron star (BNS) merger, had poor sky localization, and there have also been events, such as GRB211211A and GRB230307A, that were missed because gravitational wave detectors were not operational at the time. In this context, **improving sky** localization and increasing the duty cycle of multiple detectors through KAGRA's operation and upgrades is becoming increasingly important. This will be essential for capturing the rare BNS merger events and achieving the sky localization precision required for electromagnetic follow-up observations.

O4c Target: 10 Mpc

- BNS range of 6.9 Mpc achieved with 90 K, 10 W input
- 10 Mpc target can be achieved by 40 K, 20 W input, removing 116 Hz peak

O5 Target: 25-130 Mpc

- Less birefringent ITMs under final polishing
- Better OMC vibration isolation and in-vac PD/QPDs under development
- Higher Q suspensions and mirrors required for 50+ Mpc Sapphire blade spring loss angle: 3.6×10^{-5} (Design: 7×10^{-7}) Sapphire suspension loss angle: 10^{-5} to 10^{-4} at 80 K (Design: $2 \times 10^{-7})$ Sapphire mirror loss angle: 1×10^{-6} at 80 K (Design: 1×10^{-8})
- Achieving 127 Mpc would allow us to improve BNS sky localization at 135 Mpc from HLV 1.55 deg² to HLVK 0.81 deg² (median)

Comparing upgrade plans for O6

- Considering 4 plans (all having designed Q suspensions and mirrors)
 - **bKAGRA DRSE**: original design sensitivity as a reference
 - **BB40**: broadband upgrade with 40 kg mirror (all others 23 kg)
 - **HFmod**: high frequency upgrade with higher power
 - HF2k or HF3k: dips at 2 kHz or 3 kHz with $T_{SRM} = 0.5\%$
- Frequency dependent squeezing and better coating are not in the

We usually assume a 100% single detector duty factor but reducing it to, e.g., 80% significantly alters the sky localization distribution across the sky. Large fraction is not well localized in HLV case

due to limited duty factor and antenna pattern but mostly covered by HLVK

Some are completely missed due to limited duty factor

HL 150 200 250 300 350 400 Distance (Mpc) Low rate for HL due to low probability of < 1 deg² (saturates at ~80 Mpc)

In-vac RF PD with a resealable lid

28

HLVK

HLV

HLVK-HFmodFIS_HQS ($\psi_p = 0.0 \text{ deg}$)

Methods and Acknowledgements

KAGRA O6

- Sky localization estimated via Fisher analysis using the IMRPhenomD waveform for a GW170817-like binary at redshift z = 0.03 (135 Mpc), sampled over 1944 uniformly distributed combinations of source location and polarization angle [see YM+, PRD 102, <u>022008 (2018)</u> for details].
- This was repeated for all combinations of detectors, and the resulting sky localization distributions were combined according to the network duty factor to

GRB230307A

< 10 deg ² rate ^[2]	1.1 /yr	5.3 /yr	5.5 /yr	5.6 /yr	5.5 /yr	5.4 /yr	5.4 /yr
< 1 deg ² rate ^[2]	0.04 /yr	2.1 /yr	2.4 /yr	2.5 /yr	2.4 /yr	2.2 /yr	2.1 /yr
Post-merger rate ^[3]				< 10 ⁻³ /yr	< 0.06 /yr	< 0.1 /yr	< 0.2 /yr
Tidal deformability improvement compared with			HL case ^[4]	~25%	~55%	~45%	~30%
Intracavity power per arm			0.34 MW	0.34 MW	0.75 MW	1.3 MW	1.3 MW
ITM Transmission			0.4%	0.4%	0.4%	0.2%	0.4%
SRM Transmission			15% (DRSE)	15%	4%	0.5%	0.5%
Frequency independent squeezing			0 dB	10 dB input	10 dB input	10 dB input	10 dB input
 [1] For GW170817-like binary at 135 Mpc [2] Detection rate for 80% duty factor case [3] Detection rate with SNR>5. Depend on neutron star equation of state and BNS event rate. See H. Tagoshi & S. Morisaki, <u>JGW-P2416311</u> for details. [4] Reduction of estimation error due to addition of KAGRA. See S. Morisaki, <u>JGW-G2516593</u> for details. 		Which KAGRA O6 plan do you like?					

obtain the actual sky localization distribution.

- Sky localization as a function of distance was plotted using $\Delta \Omega \propto (SNR)^{-2} \propto d^2$, up to the BNS range (the sky-averaged distance at which a BNS signal can be detected with SNR = 8).
- Event rate was estimated using O3b estimate of 105.5 /Gpc³/yr, multiplied by volume $4\pi/3*L^3$, assuming all the BNS are 1.4-1.4M_o [LVK, <u>PRX **13**</u>, 011048 (2023)]
- Treatment of beyond BNS range and BNS mass distribution is of future work.
- We would like to thank <u>Masaomi Tanaka</u> for his invaluable input on sky localization requirements from the perspective of optical and infrared follow-up observations.