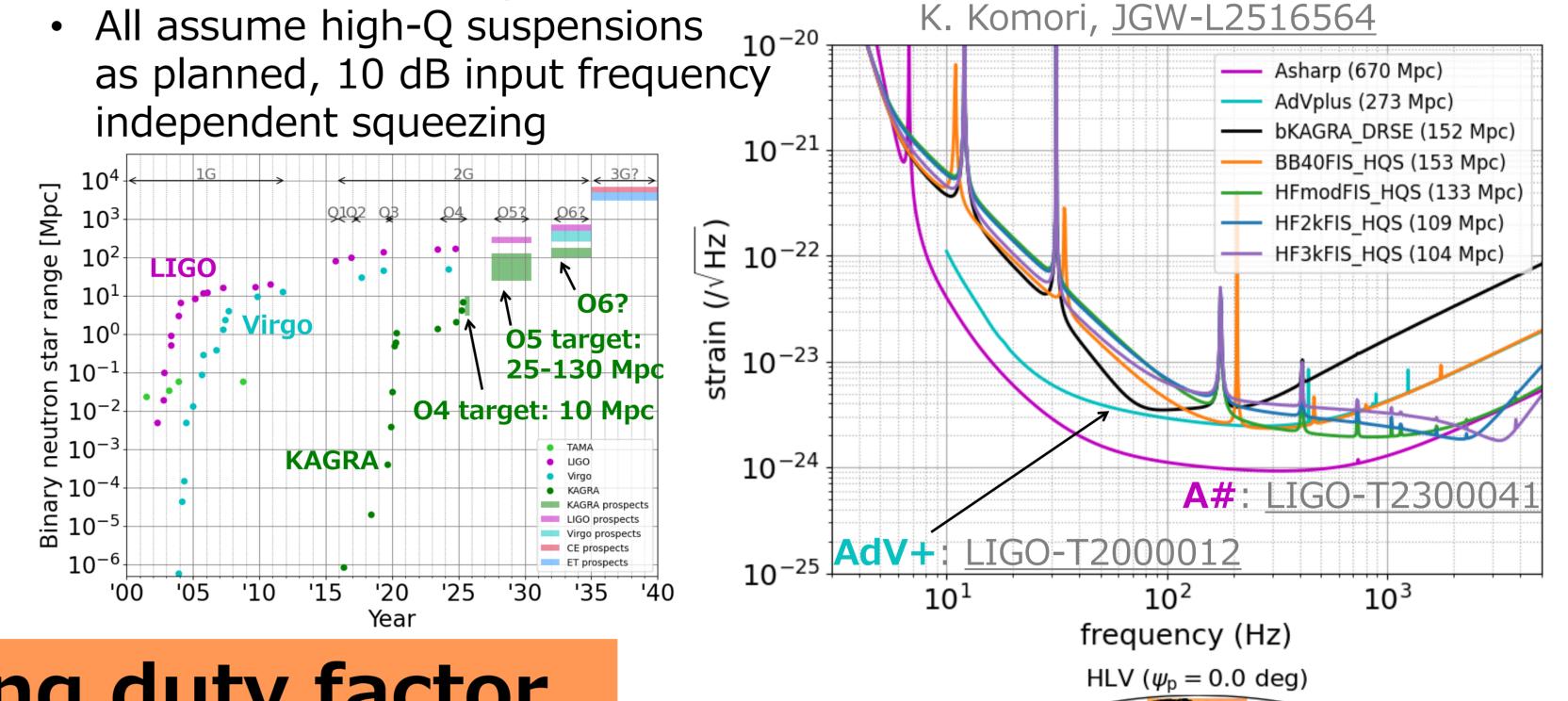
#### JGWC 2025年研究会 (JAXA, Sagamihara, May 9-10, 2025)

# KAGRA upgrade choices based on sky localization capability





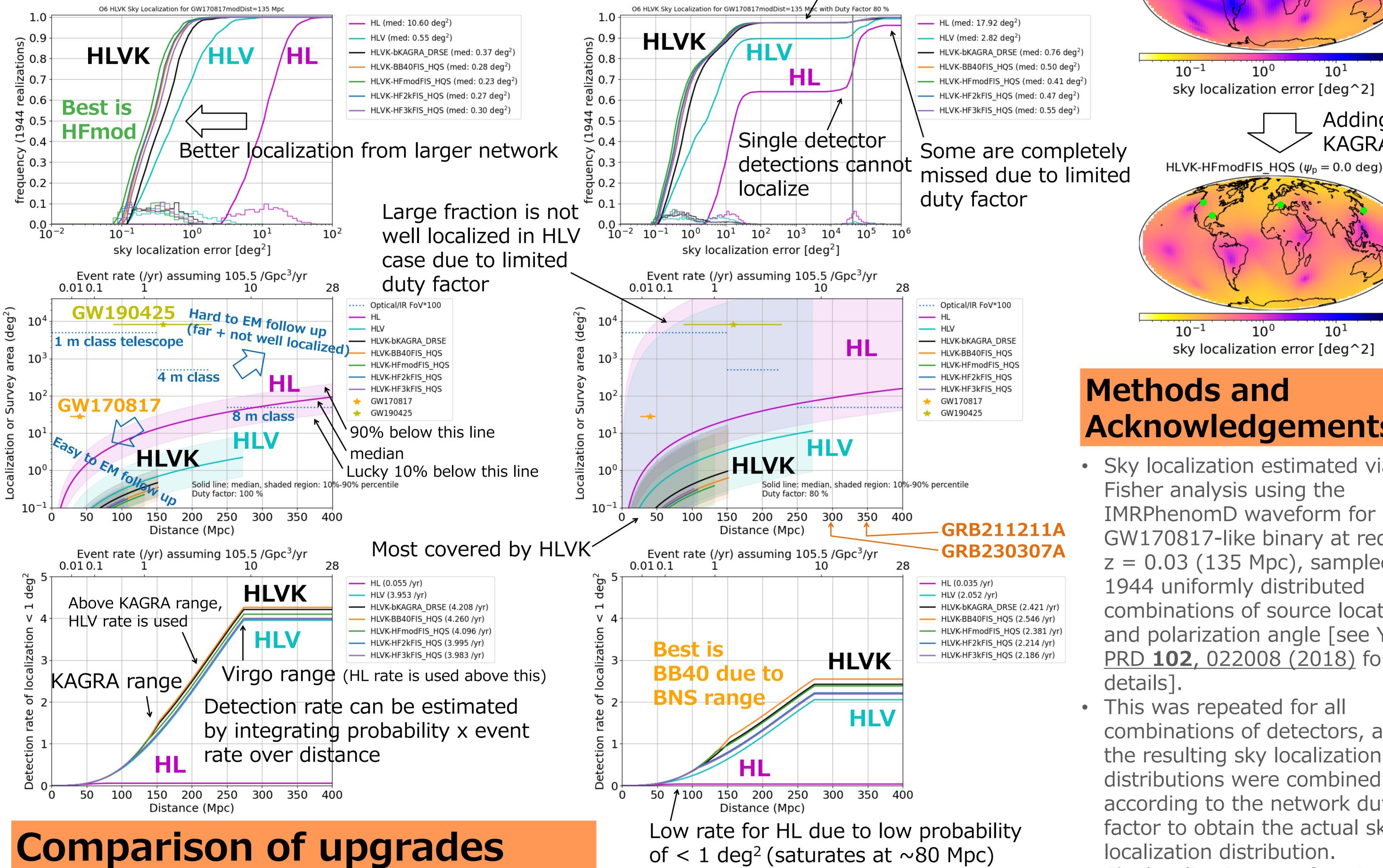
Yuta Michimura RESCEU, University of Tokyo michimura@resceu.s.u-tokyo.ac.jp

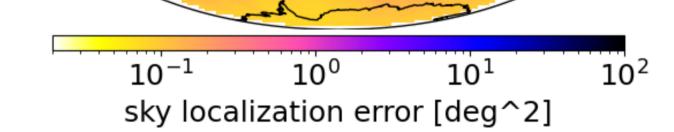

A high-frequency upgrade of KAGRA is being **considered** to probe neutron star physics via binary neutron star (BNS) coalescences. Given the low BNS merger rate, focusing solely on post-merger signals may not be an effective strategy. Even if detected, limited signal-to-noise ratios would make extracting neutron star physics challenging. A key question is whether to prioritize maximizing the BNS range to boost detection rates or enhancing high-frequency sensitivity to improve sky localization and tidal deformability estimation. We estimate the sky localization capability of the LIGO-Virgo-KAGRA network, accounting for detector duty factors. For identical BNS detections, the **high-**

## **KAGRA upgrade options in 2030s**

- KAGRA 10yr Task Force considers 15 upgrade options for 2030s
- Here we consider 4 options out of them
  - **bKAGRA DRSE**: original design sensitivity as a reference
  - **BB40**: broadband upgrade
  - **HFmod**: high frequency upgrade




- HF2k or HF3k: dips at 2 kHz or 3 kHz KAGRA upgrade options:




frequency upgrade improves sky localization by ~20% over the broadband option. However, in terms of annual events localized within 1 deg<sup>2</sup>, the broadband upgrade performs better. Adding KAGRA increases this number by about 20%.

### Sky localization capability including duty factor

• We usually assume a 100% single detector duty factor (left plots) but reducing it to, e.g., 80% (right plots) significantly alters the sky localization distribution across the sky. HLVK covers 90+% of events





10<sup>0</sup>

 $10^{1}$ 

Adding

KAGRA

 $10^{-10}$ 

#### Methods and Acknowledgements

- Sky localization estimated via Fisher analysis using the IMRPhenomD waveform for a GW170817-like binary at redshift z = 0.03 (135 Mpc), sampled over 1944 uniformly distributed combinations of source location and polarization angle [see YM+, PRD 102, 022008 (2018) for
- This was repeated for all combinations of detectors, and the resulting sky localization distributions were combined according to the network duty factor to obtain the actual sky localization distribution.

|                                                                                                                                                                                                                                                                                                                                                     | HL                    | HLV                   | bKAGRA                | <b>BB40</b>              | HFmod                 | HF2k                  | HF3k                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|
| <b>BNS range (1.4-1.4 M<sub>o</sub>)</b>                                                                                                                                                                                                                                                                                                            | 670 Mpc               | 273 Mpc               | 152 Mpc               | 153 Mpc                  | 133 Mpc               | 109 Mpc               | 104 Mpc               |
| Median localization <sup>[1]</sup>                                                                                                                                                                                                                                                                                                                  | 10.6 deg <sup>2</sup> | 0.55 deg <sup>2</sup> | 0.37 deg <sup>2</sup> | 0.28 deg <sup>2</sup>    | 0.23 deg <sup>2</sup> | 0.27 deg <sup>2</sup> | 0.30 deg <sup>2</sup> |
| < 10 deg <sup>2</sup> rate <sup>[2]</sup>                                                                                                                                                                                                                                                                                                           | 1.1 /yr               | 5.3 /yr               | 5.5 /yr               | 5.6 /yr                  | 5.5 /yr               | 5.4 /yr               | 5.4 /yr               |
| < 1 deg <sup>2</sup> rate <sup>[2]</sup>                                                                                                                                                                                                                                                                                                            | 0.04 /yr              | 2.1 /yr               | 2.4 /yr               | 2.5 /yr                  | 2.4 /yr               | 2.2 /yr               | 2.1 /yr               |
| Post-merger rate <sup>[3]</sup>                                                                                                                                                                                                                                                                                                                     |                       |                       |                       | < 10 <sup>-3</sup> /yr   | < 0.06 /yr            | < 0.1 /yr             | < 0.2 /yr             |
| Tidal deformability improvement compared with HL case [4]                                                                                                                                                                                                                                                                                           |                       |                       |                       | ~25%                     | ~55%                  | ~45%                  | ~30%                  |
|                                                                                                                                                                                                                                                                                                                                                     |                       |                       |                       | GRA O6 plan do you like? |                       |                       |                       |
| <ul> <li>[2] Detection rate for 80% duty factor case</li> <li>[3] Detection rate with SNR&gt;5. Depend on neutron star equation of state and BNS event rate. See H. Tagoshi &amp; S. Morisaki, JGW-P2416311 for details.</li> <li>[4] Reduction of estimation error due to addition of KAGRA. See S. Morisaki, JGW-G2516593 for details.</li> </ul> |                       |                       |                       |                          |                       |                       |                       |

• Sky localization as a function of distance was plotted using  $\Delta \Omega \propto$  $(SNR)^{-2} \propto d^2$ , up to the BNS range (the sky-averaged distance at which a BNS signal can be detected with SNR = 8). • Event rate was estimated using O3b estimate of 105.5 /Gpc<sup>3</sup>/yr, multiplied by volume  $4\pi/3*L^3$ [LVK, PRX **13**, 011048 (2023)] • Treatment of beyond BNS range is of future work.

• We would like to thank Masaomi Tanaka for his invaluable input on sky localization requirements from the perspective of optical and infrared follow-up observations.