JGWC 2025年研究会 (JAXA, Sagamihara, May 9-10, 2025)

KAGRA upgrade choices based on sky localization capability

Yuta Michimura RESCEU, University of Tokyo michimura@resceu.s.u-tokyo.ac.jp

A high-frequency upgrade of KAGRA is under consideration, aiming to target post-merger signals of binary neutron star (BNS) coalescences. However, given the low BNS merger rate, focusing solely on post-merger signal detection may not be an effective strategy. Even if a post-merger signal is detected, extracting neutron star physics would be challenging due to limited signal-to-noise ratio. An important question is whether to prioritize maximizing the BNS range to increase the detection rate, or to enhance high-frequency sensitivity to improve sky localization and tidal deformability. In this study, we estimate the sky localization capability of the LIGO-Virgo-KAGRA network, incorporating the detectors' duty factors. We find that, for the same BNS detections, the **high-frequency upgrade yields** approximately 20% better sky localization than the broadband option. However, in terms of the number of events per year localized to within 1 deg², the broadband upgrade performs better. Notably, with the addition of KAGRA to the network, this number increases by a factor of about 1.5.

KAGRA upgrade options in 2030s

- KAGRA 10yr Task Force considers 15 upgrade options for 2030s
- Here we consider 4 options out of them
 - **bKAGRA DRSE**: original design sensitivity as a reference
 - **BB40**: broadband upgrade
 - **HFmod**: high frequency upgrade
 - HF2k or HF3k: dips at 2 kHz or 3 kHz

- localization distribution.

			1	1		1	
	HL	HLV	bKAGRA	BB40	HFmod	HF2k	HF3k
BNS range	670 Mpc	273 Mpc	152 Mpc	153 Mpc	133 Mpc	109 Mpc	104 Mpc
Median localization ^[1]	10.6 deg ²	0.55 deg ²	0.37 deg ²	0.28 deg ²	0.23 deg ²	0.27 deg ²	0.30 deg ²
< 10 deg ² rate ^[2]	1.1 /yr	6.4 /yr	7.8 /yr	7.8 /yr	7.4 /yr	6.9 /yr	6.9 /yr
< 1 deg ² rate ^[2]	0.04 /yr	2.1 /yr	3.1 /yr	3.2 /yr	2.9 /yr	2.5 /yr	2.5 /yr
Post-merger rate ^[3]				< 10 ⁻³ /yr	< 0.06 /yr	< 0.1 /yr	< 0.2 /yr
Tidal deformability impr	HL case ^[4]	~25%	~55%	~45%	~30%		
[1] At 135 Mpc, for 100% duty factor case			Which KAGRA O6 plan do you like?				
[2] Detection rate for 80% duty factor case							
[3] Detection rate with SNR>5. Depend on neutron star							
equation of state and BNS event rate. See H. Tagoshi							
& S. Morisaki, JGW-P2416311 for details.							
[4] Reduction of estimation error due to addition of							
KAGRA. See S. Morisaki, JGW-G2516593 for details.							

Sky localization as a function of distance was plotted using $\Delta \Omega \propto$ $(SNR)^{-2} \propto d^2$, up to the BNS range (the sky-averaged distance at which a BNS signal can be detected with SNR = 8). Event rate was estimated using O3b estimate of 105.5 /Gpc³/yr, multiplied by volume $4\pi/3*L^3$ [LVK, <u>PRX **13**</u>, 011048 (2023)] Treatment of beyond BNS range is of future work. • We would like to thank Masaomi

Tanaka for his invaluable input on sky localization requirements from the perspective of optical and infrared follow-up observations.