2024年度第一回CRCタウンミーティング

KABRA

2025年3月10日

2030年代の 地上重力波検出器 とKAGRAの戦略

道村唯太 東京大学大学院理学系研究科附属 ビッグバン宇宙国際研究センター michimura@resceu.s.u-tokyo.ac.jp

地上重力波検出器のネットワーク

/irgo

CEO600

LIGO Livingston

LIGO-India

現状(2年前;04開始時)の感度の比較

• 下に行くほど感度が良い(2倍良いと、8倍の観測数)

NOTE: Not the latest. Taken when 5 detectors are locked simultaneously on June 1, 2023

LIGO-Virgo-KAGRAの共同観測計画

- 複数台による観測が重要
- より連携を強化したInternational Gravitational Wave Observatory Network (IGWN)構想も

• LIGO/VirgoはO5、O6以降に向けアップグレード

• 次世代計画も進行中、全宇宙の恒星質量連星観測

Einstein Telescope(欧州, 10-15 km)

10 kmの△か

15 kmの2L

- 地下建設 (サルデーニャ島 or 白独蘭の国境)
- 10 Kシリコン鏡の干渉計と常温石英鏡の干渉計の2種類

- LIGO Voyager: 120 K シリコン鏡(輻射冷却)
- NEMO: 豪州、4 km、120 K シリコン鏡

3種類のアップグレード案

- LF: 懸架線細く、低パワー化して低周波特化
- BB: 鏡の改良、周波数依存スクイージングで広帯域

 $85 M_{\odot}$

GW190521

66 M 🖉

142 M

• HF: 高パワー化して高周波特化

3種類のアップグレード案

- LF: 懸架線細く、低パワー化して低周波特化
- BB: 鏡の改良、周波数依存スクイージングで広帯域
- HF: 高パワー化して高周波特化
 BB2019案

BB2025案 くさらにがんばる (それでもLIGO A#には勝てない)

<u>JGW-T2416182</u>

A#などと同様のアップグレードを すると、低周波はサスペンション 熱雑音が厳しい 4 kmと3 kmの違いも大きい 15

3種類のアップグレード案

- LF: 懸架線細く、低パワー化して低周波特化
- BB: 鏡の改良、周波数依存スクイージングで広帯域

2.0

SLv4

SKa

2.5 causality • HF: 高パワー化して高周波特化

		それ	いぞれ	hの	サ1	ſΙ	ンフ	化比	賋	
 高周波の方が 				ユニークなサイエンスが狙えそう						
LIGOOOG(2030?~) $KAGRAO 231 RE 0 36$										NEMO 10 ³
		N KAGRA	V LIGO A#	LF2019	LF2024	BB2019	BB2024	HF2019	HF2024	HF3k
NR>8)	100 - 100M ₀	353 Mpc	4927 Mpc	2019 Mpc	3787 Mpc	306 Mpc	2154 Mpc	112 Mpc	200 Mpc	277 Mpc
Jes (S	30 - 30M₀	1095 Mpc	6144 Mpc	1088 Mpc	2382 Mpc	842 Mpc	4229 Mpc	270 Mpc	407 Mpc	552 Mpc
Ranç	1.4 - 1.4M _☉	153 Mpc	670 Mpc	85 Mpc	196 Mpc	178 Mpc	537 Mpc	155 Mpc	133 Mpc	104 Mpc
BNS sky locali- zation ※		10.64 deg^2 $\rightarrow 1.40 \text{ deg}$	(HL-only) ² (with K)	10.28 deg ²	2.65 deg ²	0.77 deg ²	0.42 deg ²	0.57 deg ²	0.61 deg ²	0.93 deg ²
BNS post-merger signal detection rate (LF & BB plans are less than 10 ⁻³ events/year) Based on merger rate estimate from 03; SNR>5. [H. Tagoshi & S. Morisaki, JGW-P2416311]										10 ⁻³ -0.2 /yea
* Fisher analysis using IMRPhenomD waveform for GW170817-like binary at z=0.03 (127 Mpc) with two A#s and KAGRA. 17										7

Fisher analysis using IMRPhenomD waveform for GW170817-like binary at z=0.03 (127 Mpc) with t Median of 108 uniformly distributed sets of the source location and the polarization angle is shown.

様々なKAGRA関連R&D (一部紹介)

 TAMA300施設を用いた周波数 依存スクイージング実証
 Y. Zhao+, PRL 124, 171101 (2020)

サファイア鏡の複屈折の対策

K. Somiya, E. Hirose, YM, <u>PRD **100**</u>, 082005 (2019) YM+, <u>PRD **109**, 022009 (2024) H. Wang, ..., YM, <u>PRD **110**, 082007 (2024)</u> M. Eisenmann+, <u>Optics Letters **49**, 3404 (2024)</u></u>

• 鏡のコーティング熱雑音

Y. Mori, Y. Nakayama+, PRD 109, 102008 (2024)

- 非ガウス型量子状態の利用検討
 @国立清華大学
 Yi-Ru Chen+, PRA 110, 023703 (2024)
- 量子制御技術の開発

例1: "Long SRC"効果の確認実験@宇宙研 例2: カー効果を使った光ばねの増強 S. Otabe, ..., YM, K. Harada, K. Somiya, PRL 132, 143602 (2024) 2024年より、オーストラリアと交流事業ASPIREもスタート

https://aspire-gw.com/

N. Aritomi+, <u>PRD **106**</u>, <u>102003 (2022)</u>

まとめ

- LIGOとVirgoは確実に高感度化を進めている
- 次世代計画のEinstein TelescopeとCosmic Explorerも着実に 設計と研究開発が進んでいる
- その中で、KAGRAや日本の役割とは?
- 中性子星物理(や超新星爆発)に特化し、KAGRAの 特性を活かした高周波アップグレードを検討中
- 2025年4月23-24日に本郷で研究会をやります(3月21日締切)
 From Quarks to Neutron Stars: Insights from kHz gravitational waves https://indico2.riken.jp/event/5141/

UTOKYO Next-generation Neutrino Science and Multi-messenger Astronomy Organization

RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program

THEMS

19