PASCOS 2024 @ Quy Nhon, Vietnam

July 9, 2024

First results from ultralight vector dark matter search with KACRA

Yuta Michimura

RESCEU, University of Tokyo

michimura@resceu.s.u-tokyo.ac.jp

on behalf of the LIGO-Virgo-KAGRA Collaboration

Based on <u>arXiv:2403.03004</u>

Global Network of GW Detectors

KAGRA Project

- Project started in 2010
- Construction completed and signed MoA with LIGO/Virgo in 2019
- 400+ collaborators
- 13 countries
- First (and so far, only) underground and cryogenic detector

LIGO-Virgo-KAGRA Observing Plan

 Coordinated runs to detect GW signals by multiple detectors

		First neutron star- black hole binary 04 sta					Planning to restart by June 2025 started on May 24, 2023 4					
https://observing.do	<u>cs.ligo.org/plan/</u>											
G2002127-v25	2015 2016	l l 2017 2018	l l 2019 2020	2021 202	2 2023	1 2024	2025	l 2026	2027	2028	2029	l 2030
KAGRA	nei	utron sta	ars							/////	/////	
	Eiz	T ct hinon	0.7 Mp	7		1-3 Mpc	≃10 Mpc			2	25-128 Mpc	
virgo	black hole	S										/////
	ا First binar	30 У Мрс	40-50 Мрс				40-80 Mpc			S	ee tex	t
			40.50				40.00					
LIGO	Mpc	Mpc	Мрс			M	pc			2	40-323 Mpc	
Updated 2024-06-14	— 01	100 O2		3		150	04 160 i			2	05 40.32	5

LIGO-Virgo-KAGRA O4 Run Status

- More than 100 events reported from LIGO-Virgo
- Will continue until June 9, 2025
- KAGRA plans to join by the end of O4
- Currently
 recovering from
 7.6 magnitude
 earthquake on
 January 1, 2024
 (hardware work
 completed)

LIGO-G2302098

Various Dark Matter Models

- ~90 orders of magnitude in mass
- Searches focused on WIMPs, but not detected yet
- Motivates new searches for other candidates

Ultralight DM with Interferometers

- Bosonic ultralight field (<~1 eV) are well-motivated from cosmology
- Behaves as classical waves

$$f = 242 \text{ Hz} \left(\frac{m_{\text{DM}}}{10^{-12} \text{ eV}} \right)$$

 Laser interferometers are sensitive to such oscillating changes

Laser Interferometry

measures differential arm length change

Laser Interferometry

• measures differential arm length change

Vector Boson

- Possible new physics beyond the standard model: New gauge symmetry and vector boson
- New vector boson can be dark matter
- B-L (baryon minus lepton number)
 - Conserved in the standard model
 - Can be gauged without additional ingredients
 - Equals to the number of neutrons
 - Roughly 0.5 per neutron mass, but slightly different between materials Fused silica: 0.501 Sapphire: 0.510
- Vector boson DM gives oscillating force

Oscillating Force from Vector Field

Acceleration of mirrors

- Almost no signal for symmetric cavity if cavity length is short (phase difference is 10⁻⁵ rad @ 100 Hz for km cavity)
- How about using interferometric GW detectors?
 A. Pierce+, PRL 121, 061102 (2018)

Previous Searches with LIGO/Virgo

- Vector boson dark matter search with LIGO O1 data and LIGO/Virgo O3 data have been done H-K Guo+, <u>Communications Physics 2</u>, 155 (2019) LIGO-Virgo-KAGRA Collaboration, <u>PRD 105</u>, 063030 (2022)
- Better constraint than equivalence principle tests
- Even better constraint could be obtained from KAGRA

Search with GW Detectors

- GW Detectors are sensitive to differential arm length (DARM) change
- Most of the signal is cancelled out (LIGO/Virgo case)

Search with KAGRA

- KAGRA uses cryogenic sapphire mirrors for arm cavities, and fused silica mirrors for others
- KAGRA can do better than LIGO/Virgo which uses fused silica for all the mirrors

Search with KAGRA

KAGRA Vector Boson Sensitivity

- Auxiliary length channels have better design sensitivity than DARM (GW channel) at low mass range
- Sensitivity better than equivalence principle tests frequency (Hz) YM, T. Fujita, S. Morisaki, 10¹ 10³ H. Nakatsuka, I. Obata, 10^{-20} PRD 102, 102001 (2020) 10^{-21} S. Morisaki, T. Fujita, YM, H. Nakatsuka, I. Obata, \mathcal{E}_B PRD 103, L051702 (2021) 10^{-22} coupling Eöt-Wash 10-23 torsion pendulum DARM 10^{-24} (GW channel) 10^{-25} MICROSCOPE mission MICH aths 10^{-26} 10^{-12} 10^{-11} 10 gauge boson mass m_A (eV)

KAGRA 2020 Data Analysis

- KAGRA performed joint observing run in April 2020 with GEO600 (O3GK)
- Displacement sensitivity still not good
 ~ 6 orders of magnitude to go at 10 Hz
- Auxiliary data not even considered as useful science data
- Data analysis done using

 a new pipeline
 H. Nakatsuka+,
 PRD 108, 092010 (2023)

KAGRA Data Analysis Results

- Still ~5 orders of magnitude worse than equivalence principle tests
- Demonstrated the feasibility of using auxiliary channels for astrophysics
- New data will be available from O4b and beyond

Summary

- Laser interferometers open up new possibilities for dark matter search
- First ultralight vector dark matter search using KAGRA 2020 data was performed
 - Sapphire mirrors allowed a new search
 - LIGO-Virgo-KAGRA collab., arXiv:2403.03004

(to be appeared in PRD)

- New data will be available by June 2025
- Also... first ultralight axion dark matter data will be available by June 2025 (ask me later!) ダークマターの正体は何か?

広大なディスカバリースペースの網羅的研究 What is dark matter? - Comprehensive study of the huge discovery space in dark matter

Additional Slides

Data Analysis Pipeline

- Nearly monochromatic signal $\omega_i = m_a \left(1 + \frac{v_i^2}{2}\right)$
- Stack the spectra in this frequency region to calculate SNR $\rho = \sum \frac{4|\tilde{d}(f_k)|^2}{T_{\rm obs}S_n(f_k)} \text{ Data}$

$$m_A \le 2\pi f_k \le m_A (1 + \kappa v)$$

- Detection threshold Obs. time determined assuming ρ follows χ^2 distribution (=assuming Gaussian noise)
- From ho , calculate 95% upper limit on coupling constant

PSD

Applied the pipeline to mock data for verification

22

Stochastic Nature of DM Signal

- DM signal is from superposition of many waves with various momentum, phase and polarization
- The amplitude fluctuates at the time scale of

 $\tau = 2\pi/(m_a v_{\rm DM}^2)$

- At low frequencies, DM signal could be too small by chance and elude detection 1.5
- Method to calculate upper limit taking into account this stochasticity developed

Coherence Time

- SNR grows with √Tobs if integration time is shorter than coherence time
- SNR grows with (Tobs)^{1/4} if integration time is longer

Freq-Mass-Coherence Time

Frequency	Mass	Coherent Time	Coherent Length
0.1 Hz	4.1e-16 eV	0.32 year	3e12 m
1 Hz	4.1e-15 eV	1e6 sec 12 days	3e11 m
10 Hz	4.1e-14 eV	1.2 days	3e10 m
100 Hz	4.1e-13 eV	2.8 hours	3e9 m
1000 Hz	4.1e-12 eV	17 minutes	3e8 m
10000 Hz	4.1e-11 eV	1.7 minutes	3e7 m

KAGRA Design Sensitivity

• Not good at low freq. because of thick and short fiber (35 cm, φ1.6 mm) to extract heat, and lower mass

(Roughly) Current Sensitivity

Smaller the better in y-axis

NOTE: Not the latest. Taken when 5 detectors are locked simultaneously on June 1, 2023

