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摘摘摘要要要

重力波是由大質量加速物體產生的時空漣漪。重力波可以被檢測為應變的波動。由於

其幅度極小，重力波應變很難被探測到最強的重力波源是黑洞和超新星碰撞等天文事

件。這些大約10 到幾千赫茲的重力波會導致大約10−21的應變，是一個極其微小的影

響。為了檢測如此微量的應變，科學家們建造了世界上最大和最複雜的激光干涉儀。

並且，在2015 年9 月14 日，激光干涉重力波天文台（LIGO）的兩個探測器首次探測到
重力，開啟了宇宙的新窗口。

為了能夠探測到重力波，降噪在重力波探測器中尤為重要。重力波探測器中有很多

噪聲源，例如量子噪聲和熱噪聲。對於基於地面的重力波探測器，地震噪聲，即地面

的振動，特別有趣。在重力波檢測頻帶，地震噪聲會在干涉儀的光學系統之間引起不

必要的震動，這對應於比重力波引起的應變高幾個數量級。因此，激光干涉儀的核心

光學器件需要由彈簧質量系統或多擺錘懸掛，以作於地面和光學器件之間的低通濾波

器。在較低頻率下，地震噪聲會激發反射鏡懸架的共振。此外，在0.1 - 0.5 Hz 左右地
面有較大幅度的振動，這被稱為二次微震，是海浪引起的地面振動。共振和微震會導

致光學器件過度運動，並會使干涉儀錯位。因此，需要對較低頻率的運動進行減震，

這是通過主動防震來完成的。主動隔振是指使用位移傳感器和線圈磁鐵執行器等主動

元件通過控制系統實現運動抑制。然而，有源組件並不完美，並且包含可能對隔離系

統的性能產生不利影響甚至損害動力波探測器靈敏度的自噪聲。因此，它們需要對主

動控制器進行適當的設計和優化，以在重力波探測器中實現主動隔離。

神岡重力波探測器(KAGRA) 是日本最近建造的地下低溫重力波探測器。在KAGRA
中，干涉儀的主要光學系統使用了三種類型的主動隔振系統，即A 型、B 型和Bp型懸
架。它們為乾涉儀中的不同光學元件提供不同尺度的地震隔離。調試這些懸架可能是

一項艱鉅的任務。為了正確實施主動隔離系統，確定了幾個子任務。這些包括傳感器

校準、傳感器和執行器對齊、懸架的頻率響應建模、設計反饋控制系統以實現光學元

件的主動阻尼和粗對準。為了解決這些任務，使用KAGRA 懸架開發並演示了幾種懸
架調試技術。本論文中提供的這些方法是穩健且易於使用的基線方法。這些方法的彙

編可作為當前和未來專員處理調試任務的基本指南。作為第四次觀測運行(O4) 之前調
試的一部分，這些方法已經在一些KAGRA 隔振系統中實施，例如B 型懸架。

A 型懸架和B 型懸架的預隔離階段利用多種類型的傳感器進行主動隔離，包括線性
可變差動變壓器(LVDT)、地震檢波器和地面地震儀。它們可以在稱為傳感器融合和傳
感器校正的兩種特殊控制方案中相互協調使用。在傳感器融合中，相對位移傳感器(例
如LVDT) 和地震檢波器被混合成一個具有整體噪聲性能的“超級傳感器”。並且，在傳
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感器校正中，因為相對位移傳感器測量懸掛平台與地面之間的相對位移，放置在懸架

附近的地震儀可用於消除相對位移傳感器中的地震噪聲耦合。這兩種方案可以單獨使

用（使用傳感器融合或傳感器校正）或一起使用（傳感器校正的相對位移傳感器和地

震檢波器之間的傳感器融合）。這些控制策略的成功實施可以降低控制系統中的有效

傳感器噪聲，從而有可能實現更好的主動隔離性能。這需要優化這些方案中使用的控

制調節器，即互補濾波器和傳感器校正濾波器。這兩個控制優化問題是相似的，因為

它們對應於在兩個相互衝突的目標之間尋求最佳權衡。此外，有源隔離系統中單自由

度的反饋控制問題具有相似的性質，它尋求干擾抑制和噪聲衰減之間的最佳折衷。因

此，這可以使用類似的方法來解決。

為了解決控制調節器設計問題，提出了使用H-infinity (H∞) 方法的特殊技術。H∞

方法是一種尋求閉環廣義系統的H∞ 範數最小化的優化方法。由於H∞ 範數的特性，

可以設計廣義對象來指定控制系統中需要最小化的信號的頻率相關上限。為傳感器融

合、傳感器校正和反饋控制問題指定了特殊的廣義系統。並且，通過正確選擇與頻率

相關的上界，問題的解決方案產生了控制調節器，其最小化目標信號（傳感器噪聲或

受控位移），其頻譜是乘法偏移（顯示等於H∞ 範數）。換句話說，傳感器噪聲或反饋

控制的位移在某種意義上被最小化，因為它的頻譜在對數刻度的所有頻率上都同樣接

近下限。

H∞ 方法在KAGRA 中使用信號回收鏡(SRM) 懸架進行測試，這是一種B 型懸架。
結果與傳感器融合和傳感器校正的原始KAGRA 實現進行了比較。實驗結果顯示H∞ 方

法導致更好的傳感器融合和傳感器校正噪聲性能。特別是，與KAGRA 傳感器校正相
比，H∞ 傳感器校正對地震噪聲耦合的抑製程度與KAGRA 傳感器校正相似，但在低
頻下幾乎沒有地震計噪聲注入。相比之下，KAGRA 傳感器校正顯著的放大了低頻噪
聲，使其無法使用。同樣，KAGRA 傳感器融合也引入了來自檢波器的低頻噪聲，但
程度較低。相比之下，H∞ 傳感器融合與H∞ 傳感器校正相結合，對檢波器噪聲有更好

的抑制，同時實現了更好的地震噪聲解耦。這使得H∞ 方法相對適用於傳感器校正和傳

感器融合。

至於反饋控制，預隔震器隔震控制的H∞優化給出了一個高階控制器，在KAGRA的
控制軟件Foton使用出現錯誤，因此不能進行測試。但模擬結果顯示，H∞控制可以抑

制預隔震器的主導運動，同時不會因注入噪聲而破壞高頻下的被動隔震性能。這正是

引力波探測器中的主動隔離系統所需要的。H∞ 方法也被用來解決一個更簡單的阻尼控

制問題，從而產生了一個更簡單的控制器，可以在KAGRA 控制系統中實現。它與使
用臨界阻尼標准設計的控制濾波器進行比較。實驗結果顯示，臨界阻尼濾波器在較高

頻率處注入了過多的噪聲，而H∞ 控制在沒有過多噪聲的情況下實現了類似的阻尼水

平。H∞ 控制的結果是有希望的，因此它應該進一步開發用於引力波探測器中的主動隔

離系統。



Abstract

Gravitational waves are ripples of spacetime produced by massive accelerated objects.
Gravitational waves can be detected as a fluctuation in strain, which is a fractional change
in distance between two objects. The gravitational-wave strain is very hard to be detected
due to its extremely small amplitude. The strongest sources of gravitational waves are
astronomical events such as the collision of black holes and supernovae. These events emit
gravitational waves around 10 to a few kHz that can cause a strain of around 10−21, which
is still an extremely tiny effect. To detect such a tiny amount of strain, scientists built the
world’s largest and most complex laser interferometer. And, on September 14th 2015, the
two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) have
made the first detection of gravitational waves, which has opened a new window on the
universe.

To be able to detect gravitational waves, noise mitigation is particularly important
in gravitational-wave detectors. There are many noise sources in a gravitational-wave
detector such as quantum noise and thermal noise. For ground-based gravitational-wave
detectors, seismic noise, which is the vibration of the ground, is particularly interesting.
At the detection frequency band, the seismic noise can cause unwanted motion between
the optics of the interferometer, which corresponds to strain that is orders of magnitude
higher than that caused by gravitational waves. Therefore, the core optics of the laser
interferometer need to be suspended by spring-mass systems or multiple-pendulums, which
behave like low-pass filters between the ground and the optics. At lower frequencies, the
seismic noise can excite the resonances of the mirror suspensions. Also, the ground hums
around 0.1 - 0.5 Hz, which is known as the secondary microseism and is the vibration of the
ground caused by ocean waves. The resonances and the microseism can cause excessive
motion in the optics and eventually knock the interferometer out of alignment. Therefore,
the motion at lower frequencies needs to be damped and this is done by active isolation.
Active vibration isolation refers to the use of active components such as displacement
sensors and coil-magnet actuators to achieve motion suppression via control systems.
However, the active components are not perfect and contain self-noise that can adversely
affect the performance of the isolation system or even compromise the sensitivity of the
detector. Hence, they require proper design and optimization of the control laws and
digital filters to achieve active isolation in a gravitational-wave detector.
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KAGRA is an underground cryogenic gravitational-wave detector recently constructed
in Japan. In KAGRA, three types of active vibration isolation systems are used for the
main optics of the interferometer, namely, Type-A, Type-B, and Type-Bp suspensions.
They provide seismic isolation of different scales for different optics in the interferometer.
Commissioning these suspensions can be a daunting task. For proper implementation of
an active isolation system, several sub-tasks are identified. These include calibration of
sensors, sensors and actuators alignment, frequency response modeling of the suspension,
and designing feedback control systems to achieve active damping and coarse alignment
of the optics. To tackle these tasks, several suspension commissioning techniques are
developed and demonstrated using the KAGRA suspensions. These methods provided in
this thesis are conservative approaches that are robust and easy-to-use. The compilation
of the methods serves as a guideline for current and future commissioners for tackling
daily commissioning tasks. Nevertheless, the methods have already been implemented in
some KAGRA vibration isolation systems, such as the Type-B suspensions, as part of the
commissioning before the fourth observation run (O4).

The pre-isolation stage of the Type-A and Type-B utilizes several types of sensors
for active isolation, including linear variable differential transformers (LVDT), geophones,
and ground seismometers. They can be used in coordination with each other in two special
control schemes called sensor fusion and sensor correction. In sensor fusion, the relative
displacement sensor (LVDT) and geophone are blended into a “super sensor” with overall
noise performance. And, in sensor correction, a seismometer placed in the proximity of the
suspension can be used to remove the seismic noise coupling in the relative displacement
sensors, which measure the relative displacement between a suspended platform and the
ground. The two schemes can be used individually (either using sensor fusion or sensor
correction) or together (sensor fusion between the sensor corrected LVDT and the geo-
phone). successful implementation of these control strategies could reduce the effective
sensor noise in the control system and hence potentially achieve better active isolation per-
formance. This calls for an optimization of the control filters, i.e. complementary filters
and sensor correction filter, that are used in these schemes. The two control optimization
problems are similar as they correspond to that seeks an optimal trade-off between two
conflicting objectives. Furthermore, the feedback control problem for a single degree of
freedom in an active isolation system is of similar nature, which seeks the optimal trade-
off between disturbance rejection and noise attenuation. Hence, that can be solved using
similar approaches.

To solve the control filter design problems, special techniques using the H-infinity
(H∞) method are proposed. The H∞ method that an optimization approach that seeks
the minimization of the H∞ norm of a closed-loop generalized plant. Due to the property
of the H∞ norm, the generalized plant can be designed to specify frequency-dependent
upper bounds for the signals that need to be minimized in a control system. Special gen-



eralized plants are specified for the sensor fusion, sensor correction, and feedback control
problems. And, with a proper choice of frequency-dependent upper bounds, solution to
the problems yields control filters that minimize the target signal (sensor noise or con-
trolled displacement) in a way that its spectrum is a multiplicative offset (which is shown
to be equal to the H∞ norm) from the lower bound. In other words, the sensor noise or
feedback controlled displacement is minimized in the sense that its spectrum is equally
closed to the lower bound at all frequencies in a logarithmic scale.

The H∞ methods are tested with the signal recycling mirror (SRM) suspension, which
is a Type-B suspension, in KAGRA. The results are compared to the original KAGRA
implementation of sensor fusion and sensor correction. And, results show that the H∞

approaches result in better sensor fusion and sensor correction noise performance. In
particular, the H∞ sensor correction suppresses the seismic noise coupling to a similar
extent compared to the KAGRA sensor correction but with virtually no seismometer
noise injection at low frequency. In contrast, the KAGRA sensor correction introduces
a significant low-frequency noise amplification, which makes it unusable. Similarly, the
KAGRA sensor fusion also introduces low frequency noise from the geophone but to a
lower extent. In comparison, the H∞ sensor fusion, combined with H∞ sensor correction,
has a better suppression of the geophone noise while achieving a better seismic noise
decoupling. This makes the H∞ method relatively suitable for sensor correction and
sensor fusion.

As for feedback control, the H∞ optimization for seismic isolation control of the pre-
isolator gave a high-order control filter that has been misinterpreted by the control soft-
ware, Foton, used in KAGRA and therefore cannot be tested. However, the simulation
result shows that the H∞ control can suppress the dominant motion of the pre-isolator
while not ruining the passive seismic isolation performance at high frequency by injecting
noise. This is exactly what is needed for active isolation systems in gravitational-wave
detectors. The H∞ method was also used to solve a simpler damping control problem,
which resulted in a simpler controller that can be implemented in the KAGRA control
system. It is compared to a control filter designed using a critical damping criterion. The
result shows that the critical damping filter injects excessive noise at higher frequencies
whereas the H∞ control achieves a similar level of damping without the excessive noise.
The results from H∞ control are promising and hence it should be further developed for
active isolation systems in gravitational-wave detectors.
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Chapter 1

Gravitational Waves

In 1915, Albert Einstein published the general theory of relativity, which redefines New-
ton’s law of universal gravitation. General relativity describes gravity as a geometry
property of the four-dimensional spacetime, i.e. curvature of spacetime. The curvature
of spacetime is a result of the presence of matter and radiation. This relationship be-
tween spacetime curvature and the energy and momentum of the matter and radiation is
given by the Einstein field equations [1], which is a set of ten coupled partial differential
equations written in the form

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (1.1)

The left-hand side of Eqn. (1.1) is the Einstein tensor Gµν ≡ Rµν − 1
2
gµνR and it only

depends on terms that describe the geometry of spacetime. The stress-energy tensor Tµν
on the right-hand side of Eqn. (1.1) describes the density and flux of energy momentum.
While the mathematics of Einstein’s general theory of relativity can be difficult, it can be
summarized in just 12 words: “Spacetime tells matter how to move; matter tells spacetime
how to curve.” [2]

In 1916, Einstein predicted the existence of gravitational waves as a solution to the
linearized Einstein field equations under the weak-field limit, i.e. spacetime is nearly flat
[3, 4]. In the weak-field limit, the Einstein field equations have solutions corresponding to
transverse waves of spatial strain that travels at the speed of light and they are generated
by time variation of the mass quadrupole moment of the source. The gravitational-wave
strain has a remarkably small amplitude, thus making them very hard to detect. In this
chapter, the nature of the gravitational waves is discussed, to an introductory extent
following Ref. [5]. Detailed explanation can be found in Refs. [6, 7]. Sec. 1.1 provides
a brief derivation of the gravitational wave under the weak-field limit. And Sec. 1.2
discusses some possible astrophysical sources of gravitational waves. Lastly, Sec. 1.3
briefly introduces the history of gravitational wave detection.
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CHAPTER 1. GRAVITATIONAL WAVES

1.1 Gravitational waves

Gravitational waves are tiny ripples of spacetime. Here, spacetime refers to the combina-
tion of the three-dimensional space x, y, z, and the one-dimensional time t and it is first
introduced in the theory of special relativity. Analogous to the three spatial coordinate
(x, y, z), a point in spacetime coordinate (t, x, y, z) is called an event. The combination of
space and time allows one to defined a so-called spacetime interval ds, which is invariant
under coordinate transformations, between two neighboring events such that

ds2 = −c2dt2 + dx2 + dy2 + dz2 , (1.2)

where c is the speed of light. Eqn. (1.2) can be generalized as

ds2 = gµνdx
µdxν , (1.3)

where gµν is the metric tensor, µ and ν are indices that range from 0 to 3 such that
(ct, x, y, z) = (x0, x1, x2, x3) (they are indices, not exponents). Note that the Einstein
summation convention is used here where a repeated index implies a summation over all
possible values of the index, i.e. aibi =

∑
i aib

i . It is easy to see that Eqn. (1.2) can be
recovered by setting the metric sensor as gµν = ηµν , where

ηµν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(1.4)

is called the Minkowski metric. The Minkowski metric denotes a special case of spacetime
corresponding to the flat spacetime. Any spacetime that is not flat corresponds to a metric
gµν ̸= ηµν and hence the metric tensor gµν encodes the information about the curvature
of spacetime.

To derive gravitational-waves, consider a small perturbation of the the flat spacetime.
In this case, the metric can be written in the form

gµν = ηµν + hµν , (1.5)

where |hµν | ≪ 1 and hµν represents the small metric perturbation away from Minkowski
space. Such configuration is called weak-field limit. Because of this, the second-order
terms of hµν can be discarded and the Einstein Tensor Gµν and the stress-energy tensor
Tµν can be expressed in linear terms of hµν . In this case, the Einstein field equations (1.1)
is said to be linearized. Now, under the choice of a special coordinates marked out by the
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worldlines of a free-falling mass 1, the linearized Einstein field equations in vacuum can
be written as (

∇2 − 1

c2
d

dt

)
hµν = 0 , (1.6)

which is a wave equation. Now, recall that hµν is a small perturbation of the flat space-
time. The fact that it satisfies the wave equation means that the small perturbation can
propagate through space with the speed of light and these perturbations are known as
gravitational waves.

For simplicity, assume that the gravitational wave propagates along the z direction,
the transverse traceless gauge requires the perturbation to take the form

hµν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



. (1.7)

This gives two polarizations, + and ×, for the gravitational wave, one along

ĥ+ =




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




(1.8)

and the other along

ĥ× =




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



. (1.9)

To see what is the physical effect of the polarization, consider a gravitational wave po-
larized in the ĥ+ direction so the h× = 0 and h+ = hei(ωt−kz), where ω is the angular
frequency of the gravitational wave and k is the wavenumber. The spacetime interval can
then be written as

ds2 = −c2dt2 + (1 + h+)dx
2 + (1− h+)dy2 + dz2 . (1.10)

Suppose there is a free-falling particle located at x = L cos θ, y = L sin θ, and z = 0, where
θ is the angle between the the particle displacement and x-axis. The proper distance

1This corresponds to fixing the so-called gauge freedom using the transverse traceless gauge (TT
gauge).
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between the particle the origin can then be evaluated as

s =

∫
ds =

∫ √
(1 + h+)dx2 + (1− h+)dy2

≈
∫ (

1 +
1

2
h+ cos (2θ)

)
dr

= L

(
1 +

1

2
h cos (2θ)eiωt

)
.

(1.11)

Now, instead of one particle, suppose there is a ring of free-falling particles populating
the full 2π angle of θ. An observer in the proper frame measuring the length of the a
particle along the x-axis, i.e. θ = 0, π, with respect to the origin would be oscillating,
with an expansion followed by a contraction. However, the proper distance of a particle
along the y-direction, i.e. θ = π/2,−π/2, would be a oscillation with a contraction
followed by an expansion, which is the opposite of that in the x-direction. A similar
analysis could be done for the ĥ× polarization and would result in a proper distance
that reads L[1+ (1/2)h sin (2θ)eiωt]. In this case, the expansion-contraction principle axis
along the θ = π/4, π + π/4 axis while the compress-expansion principle axis is along the
θ = −π/2, π/2 + π/4 axis, i.e. along the cross directions hence the name h×. The time
evolution of the ring of test masses over a period of 2π/ω is shown in Fig. 1.1 for the two
polarization modes.

Figure 1.1: Ring of test masses with gravitational waves going into the paper at time
stamps t = 0, π

2ω
, π
ω
, 3π
2ω
, 2π

ω
. Top: + polarization. Bottom: × polarization.

If the observer measures the radius of the ring along the direction of the expansion,
and compare the measurements at time t = 0 and t = π/2ω, the distance would change
by a fraction ∆L = Lh/2. Rewriting the relationship gives

h =
2∆L

L
, (1.12)
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which is similar to the definition of strain, which is ∆L/L. From here, it can be seen
that the gravitational wave is a transverse wave of strain. This makes instruments that
can measure a fractional change in distance, such as a Michelson interferometer, a good
candidate for direct detection of gravitational waves.

1.2 Gravitational wave sources

The metric perturbation from a source is given by

hµν =
2G

Rc4
Ïµν , (1.13)

where G is the gravitational constant, R is the distance between the observer and the
source, and Iµν is the reduced quadrupole moment defined by

Iµν =

∫
dV

(
xµxν −

1

3
δµνr

2

)
ρ(r) , (1.14)

where V is the volume, δµν is the Kronecker delta and ρ(r) is the mass distribution.
The reason why the dominating component is the quadrupole term, as oppose to the
dipole term in electromagnetism, is due to the conservation of momentum and angular
momentum [5]. Suppose there are two point masses with mass M and orbiting along the
z-axis with an orbital frequency of forb and a radius of r0. The quadrupole moments can
then be straightforwardly calculated as

Ixx = 2Mr20

(
cos2 (2πforbt)−

1

3

)
, (1.15)

Iyy = 2Mr20

(
sin2 (2πforbt)−

1

3

)
, (1.16)

and
Ixy = 2Mr20 cos (2πforbt) sin (2πforbt) . (1.17)

Plugging these into Eqn. (1.13) yields

hxx = −hyy =
32π2G

Rc4
Mr20f

2
orb cos (4πforbt) , (1.18)

and
hxy = hyx =

32π2G

Rc4
Mr20f

2
orb sin (4πforbt) . (1.19)

As can be seen, the amplitude of the gravitational wave scales as

h =
32π2G

Rc4
Mr20f

2
orb . (1.20)
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Suppose there there are there is a binary system of two neutron stars with masses at the
Chandrasekhar limit of about M = 3 × 1030 kg. They are orbiting in such that they are
almost touching. This gives a orbiting radius of around r0 = 20 km and a frequency of
forb = 400Hz. They are located at the Virgo Cluster, which is the nearest galaxy clusters
to the Earth, at around R = 4.5 × 1023m, corresponding to 15Mpc (Megaparsec). This
gives an gravitational wave amplitude of

h ≈ 10−21 , (1.21)

which is extremely small.

As can be seen, gravitational waves are very tiny. While gravitational waves can
easily be produced by massive objects that has a changing quadrupole moment, only
systems that are massive, compact, or violent enough can produce a gravitational field
strong enough that can be observed with current technology. This means that terrestrial
sources are unlike to be detected. Fortunately, there are several candidates of astronomical
gravitational wave sources. Example includes the aforementioned binary neutron star
mergers, binary black hole mergers, core-collapse supernovae, and stochastic background.
They are only mentioned here and details are given in Refs. [5, 6].

1.3 A brief history of gravitational wave detection

In 1974, the first indirect detection of gravitational waves was made via the discovery of
a binary pulsar system (PSR B1913+16) [8], which has decaying orbital rate matching
that predicted by general relativity as a loss of energy due to the emission of gravitational
wave. The first direct detection of of gravitational waves was made in 2015 by the two
detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO), which are
located in the US [9]. The two detectors simultaneously observed a transient gravitational-
wave signal (GW150914), with an increasing frequency from 35Hz to 250Hz with a peak
gravitational-wave strain of 10−21. The signal has lasted for about 0.2 seconds and it
matches the waveform predicted by general relativity for the inspiral and merger of a pair
of black holes and the ringdown of the remnant black hole.

The first detection of gravitational waves opens up a unique window on the universe.
Following the first detection, two more detection of gravitational waves were made during
the first observation run (O1). The Virgo detector, which is located in the Italy, joined
the second observing run, O2, and has detected a gravitational wave generated by binary
neutron star mergers (GW170817). The particular event has an electromagnetic coun-
terpart in the form of gamma ray burst and it was detected by the Fermi Gamma-Ray
Burst Monitor (GRB 170817A) 1.7 seconds after the coalescence of the neutron stars
[10]. The close arrival times of the two waves can be used to place strong constraints on
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the fundamental physics of gravity, including the speed of gravitational wave. In fact,
the difference between the speed of gravity and the speed of light was constrained to be
between −3×−15 and +7 × 10−16 times the speed of light, improving the previous esti-
mate by around 14 orders of magnitude [11]. The LIGO and Virgo detectors continued
to operate for an third observation run (O3) in 2019 after substantial upgrades between
the runs. Due to the improved sensitivities of the detector networks, the total number of
detected gravitational wave candidates have been increase from 11 (after the end of O2)
to 90 (after the end of O3) [12].

KAGRA is a new underground cryogenic gravitational-wave detector located in Japan
[13, 14]. Different from LIGO and Virgo, KAGRA implements two new technologies that
are important for the third-generation gravitational-wave detectors such as the Einstein
Telescope [15], that is, being built underground and operating in cryogenic temperature.
These new technologies enable the detector to run at higher sensitivities. The KAGRA
detector has been constructed and still being developed to reach the designed sensivity
[14]. In 2020, KAGRA and GEO 600, a gravitational-wave detector in Germany [16],
conducted an two-week observing run (O3GK), during the suspension of the O3 [17].
The binary neutron star range of the two detectors were 0.6 megaparsec and 1 parsec for
KAGRA and GEO 600, respectively. But, no observations were made. Upgrades of the
KAGRA detector is still ongoing and it is planned to join the forth observing run (O4),
which is planned to be commenced in March 2023.

Optimizing Active Isolation Systems in Gravitational-Wave Detectors 9
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Chapter 2

Gravitational-Wave Detector

The gravitational-wave detector is instrument designed to achieve an outstanding sensi-
tivity such that it is capable of detecting a fractional change in length in the order of
10−21. Current gravitational-wave detectors are interferometers that has a complicated
optical configuration. But, the basic principles of a gravitational-wave detector can be
illustrated by just a few fundamental components, such as the Michelson interferome-
ter and the Fabry-Perot cavity. The Michelson interferometer and Fabry-Perot cavity
are explained in Sec. 2.1 and 2.2, respectively. In Sec. 2.3, several noise sources of the
gravitational-wave detector are also discussed.

2.1 Michelson interferometer

A gravitational wave causes space to contract and expand in the two transverse directions.
To detect gravitational waves, this calls for a measurement of differential length changes
in two orthogonal directions. One particular instrument fulfilling this purpose is the
Michelson interferometer. The Michelson interferometer is originally used to detect the
relative motion between the Earth and the luminiferous aeither [18]. The simplest version
of the interferometer shown in Fig. 2.1 is only composed of 5 components, a laser, a
beamsplitter, two mirrors, and a photodiode.

In a Michelson interferometer, the laser is divided into two orthogonal paths, say x

and y directions. The two beams travel some distances lx and ly before the reach the
mirrors, which are denoted test mass X and test mass Y. They are reflected by the test
masses and they travel the same distances before the recombination at the beamsplitter.
The recombined beam is an interference of the two beams and it is absorbed by the
photodiode, which measures the light power of the recombined beam. Suppose, right
before beam travels through the beamsplitter, the electric field of the laser reads

E(x, t) = E0e
i(ωt−kx) , (2.1)

11
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Figure 2.1: A simple Michelson interferometer.

where E0 is the amplitude of the electric field, ω is the angular frequency, t is time, and k
is the wave number. The returned beam at the photodiode traveled along the x direction
reads

Ex(t) =
i

2
E0e

i(ωt−2klx) , (2.2)

picking up an amplitude transmission coefficient of i/
√
2 and an amplitude reflection co-

efficient of 1/
√
2 from the beamsplitter. Similarly, the beam traveled along the y direction

reads
Ey(t) =

i

2
E0e

i(ωt−2kly) . (2.3)

The electric field at the output, i.e. the photodiode, reads

Eout(t) = Ex(t) + Ey(t)

=
i

2
E0e

i(ωt−2klx) +
i

2
E0e

i(ωt−2kly)

=
i

2
E0e

iωt
(
e−i2klx + e−i2kly

)

=
i

2
E0e

i(ωt−klx−kly)
(
eik(lx−ly) + e−ik(lx−ly)

)

= iE0e
i(ωt−klx−kly) cos (k(lx − ly))

(2.4)

The power detected by the photodiode is proportional to |Eout(t)|2 and the power at the
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input is proportional to |E(x, t)|2 with the same proportionality. This gives

Pout

Pin

=
E2

0 cos
2 (k(lx − ly))
E2

0

Pout =
Pin

2
[1 + cos (2k(lx − ly))] ,

(2.5)

where Pout is the power readout of the photodiode and Pin is the laser power at the input.

If the Michelson interferometer is used as a gravitational-wave detector, each mirror
needs to be a free-falling mass and instead of having it fixed on a rigid structure as in
the original Michelson-Morley experiment. This is by decoupling the mirrors from the
ground motion and the details are given in Chapter. 3. With the mirrors suspended, they
can be though as two of the test masses in a ring of test masses. As gravitational wave
propagates through the ring, assuming that the interferometer arms are aligned in with
the polarization of the gravitational wave, one arm gets compressed and the other gets
stretched. This induces a differential change in arm length. Suppose the gravitational
wave caused a length change of ∆l/2 in the x direction and a change of −∆l/2 in the y
direction. The Michelson interferometer readout (2.5) becomes

Pout(∆l) =
Pin

2
[1 + cos (2k(lx − ly +∆l))] . (2.6)

The differential change in length ∆l is a small quantity. Therefore, the power readout
can be written as a first-order approximation

Pout(∆l) = Pout(0) +
dPout(∆l

′)

d∆l′

∣∣∣∣
∆l′=0

∆l , (2.7)

which gives

Pout(∆l) =
Pin

2
[1 + cos (2k(lx − ly))− 2k∆l sin (2k(lx − ly))] . (2.8)

As can be seen, the Michelson interferometer has effectively become transducer of gravi-
tational wave signal ∆l with a calibration factor of −kPin sin (2k(lx − ly)).

Here, the difference in the interferometer arm lengths lx − ly is a design factor. Intu-
itively, it would seem reasonable to put the initial lengths such that sin (2k(lx − ly)) = 1,
giving

lx − ly =
1

2k

(π
2
± nπ

)

=
λ

4

(
1

2
± n

)
,

(2.9)

where the wave number is k = 2π/λ, λ is the wavelength of the laser, and n = 0, 1, 2, . . . .
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This would put the detector at an operating point where it is most sensitive to the
gravitational wave and this particular operating point is called the mid-fringe. However,
this is not true when readout noise comes into consideration.

2.1.1 Photon shot noise

One fundamental readout noise of the interferometer is the photon shot noise. The photon
shot noise is due to the quantum nature of light. By measuring the laser power at the
output of the Michelson interferometer, effectively this is the same as counting the number
of photons arriving at the photodiode. The number of photon arrival is not a constant but
is a random variable that follows a probability distribution called the Poisson distribution.
The Poisson distribution can be estimated as a Gaussian distribution with a standard
deviation of

σNphoton
=
√
Nphoton , (2.10)

where Nphoton is the mean number of photon arriving at the photodiode. Now, the light
power is related to the mean number of photon by the Planck-Einstein relation

Pout = Nphotonℏω , (2.11)

where ℏ is the reduced Planck constant. The fluctuation in laser power at the mid-fringe
is then

σPmid
= σNphoton

ℏω

=
√
Nphotonℏω

=

√
Pin

2ℏω
ℏω

=

√
Pinℏω
2

,

(2.12)

where the mean number of photon is approximated from the power readout with the
absence of the gravitational-wave signal, i.e. Nphoton = Pin/(2ℏω). The fluctuation in
power cannot be distinguished from the change in power caused by the change in arm
length ∆l, which is caused by the gravitational wave. The fluctuation in power can be
converted to an equivalent change in arm length via the calibration factor, which is kPin

at the mid-fringe. Dividing the change in arm length by the common arm length l of
the interferometer (assuming lx − ly is much smaller than l) gives a strain fluctuation at
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mid-fringe of

σhmid
=

1

l

σPmid

kPin

=
1

l

√
Pinℏω

2(2π/λ)2P 2
in

=
1

l

√
ℏcλ
4πPin

.

(2.13)

Now, instead of the mid-fringe, consider the operating point near the dark fringe.
Here, the dark fringe is defined the operating point where the Michelson readout is null.
This is achieved by setting the difference in arm length by

lx − ly =
1

2k
(π ± 2nπ)

=
λ

4
(1± 2n) ,

(2.14)

where n = 0, 1, 2 . . . . Suppose the operating point is set to some distance d from the dark
fringe, where d≪ λ. The power readout is then

Pdark(∆l) = Pin [1− cos (2kd) + 2k∆l sin (2kd)] . (2.15)

And, expanding up to a second order of d gives

Pdark(∆l) = Pin

[
2k2d2 + 4k2d∆l

]
. (2.16)

This gives a calibration factor of 4k2dPin. Without the presence of the gravitational wave,
the power detected by the photodiode is 2k2d2Pin, which converts to a mean number of
photon of Nphoton = 2k2d2Pin/(ℏω). This gives the power fluctuation at the dark fringe

σPdark
=
√
Nphotonℏω

=

√
2k2d2Pin

ℏω
ℏω

= kd
√

2Pinℏω .

(2.17)

The fluctuation of interpreted strain when operating at the dark fringe is then

σhdark
=

1

l

σPdark

4k2dPin

=
1

l

kd
√
2Pinℏω

4k2dPin

=
1

2l

√
ℏcλ
4πPin

.

(2.18)
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Comparing Eqn. (2.13) and (2.18), it is obvious that the strain fluctuation, and hence
strain noise, at the dark fringe is smaller by a factor of 2. For this reason, the operating
point of a gravitational wave detector is chosen to be at the dark fringe so it is insensitive
to important noise sources [5]. In this sense, the gravitational-wave detector is said to be
a null instrument. However, the difference in arm length lx− ly cannot not be zero for the
same reason that the gravitational wave detector needs to be sensitive to gravitational
waves. The difference is known as the Schnupp asymmetry and more details are given in
Ref. [19].

The amplitude spectral density hshot(f) of the shot noise, with a standard deviation
of σhshot

can be obtained by the following relationship

∫ 1
2

0

hshot(f)
2 dfn = σ2

hshot
, (2.19)

where fn is the normalized frequency, which is the frequency divided by the sampling
frequency. Note that the shot noise hshot(f) is a white noise, meaning that it has no
frequency dependency. The frequency dependency (f) is kept here to indicate that it is
an amplitude spectral density. Using the shot noise at dark fringe, i.e. σhshot

= σhdark
, this

gives

hshot(f) =
√
2σhdark

=

√
2

2l

√
ℏcλ
4πPin

,
(2.20)

i.e. picking up a factor of
√
2 compared to Eqn. (2.18).

2.1.2 Radiation pressure noise

The shot noise derived in Eqn. (2.13) and (2.18) is inversely proportional to the square
root of the power of the injected laser, i.e. ∝

√
1/Pin. This suggests an increase in laser

power for a reduction of photon shot noise. However, even if it is possible to increase
the laser power indefinitely, there exists another fundamental quantum noise that would
suggest otherwise. The noise is called the radiation pressure and like the photon shot
noise, it is a quantum noise due to the quantum nature of light.

In the Michelson interferometer, the laser is reflected by the mirror, which is assumed
to be free falling. Assuming that the light is reflected completely by the test mass, the
light exerts a force P/c on the mass, where P is the power of the light. Now, recall that
the power fluctuation is due to the shot noise is

√
Nphotonℏω in Eqn. (2.12), and with an

average power Pin/2 in one arm, the power fluctuation of the laser in one arm happens to
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be exactly that at the mid-fringe, i.e.

σPrad
=

√
Pinℏω
2

. (2.21)

It follows that the fluctuation in force exerting on the mirror is

σFrad
=
σPrad

c

=

√
Pinℏω
2c2

=

√
πPinℏ
cλ

(2.22)

The corresponding amplitude spectral density of the force fluctuation F (f) due to radia-
tion pressure is obtained by the same procedure in Eqn. (2.20), which gives

F (f) =

√
2πPinℏ
cλ

. (2.23)

The amplitude spectral density of the mirror displacement X(f) casued by the radiation
pressure can be obtained from the Newton’s second law in the frequency domain,

m(2πf)2X(f) = F (f)

X(f) =
1

m(2πf)2

√
2πPinℏ
cλ

=
1

mf 2

√
Pinℏ
8π3cλ

,

(2.24)

where m is the mass of the mirror. Finally, the strain noise due to the radiation pres-
sure hrad(f) can be obtained by dividing the mirror displacement by the length of the
interferometer arm and multiplying by a factor of 2, taking into account the two mirrors,
gives

hrad(f) =
2

l
X(f)

=
1

mf 2l

√
Pinℏ
2π3cλ

.

(2.25)

As can be seen, the radiation pressure noise is proportional
√
Pin. This suggests that the

shot noise and the radiation pressure noise cannot be minimized simultaneously and there
exists an optimal Pin in which the total quantum noise is minimum. Nevertheless, the
radiation pressure noise alone can be minimized by increasing the mass m of the mirrors.

The total quantum noise hquantum(f) is given by a quadrature sum of the shot noise
hshot(f) and the radiation pressure noise hrad(f), assuming that they are not correlated.
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This gives the quantum noise

hquantum(f) =
√
hshot(f)2 + hrad(f)2 . (2.26)

The quantum noise has a minimum when hshot = hrad. Using Eqn. (2.20) and (2.25), this
gives

√
2

2l

√
ℏcλ
4πPin

=
1

mf 2l

√
Pinℏ
2π3cλ

Pin =
1

2
πcλmf 2 .

(2.27)

Suppose the optimal laser power is chosen to observing gravitational waves at f = 100Hz.
In terms of order of magnitude, the speed of light is c ∼ 108, the wavelength, assuming
an infrared laser, is λ ∼ 10−6, and a mass m ∼ 100, this gives the optimal laser power of
Pin ∼ 106W. This is still considerably higher than lasers that are used in gravitational-
wave detectors today, which is 200W for the advanced LIGO detector [20]. The quantum
noise for such configuration is shown in Fig. 2.2 as a reference.
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Figure 2.2: Quantum noise of a Michelson interferometer with λ = 1064 nm, m = 1kg,
and l = 4km. Blue solid: Photon shot noise. Orange dashed: Radiation pressure noise.
Green dash-dot: Total quantum noise.

2.1.3 Optimal arm length

The remaining design freedom of the Michelson interferometer is the arm length l. Naviely
speaking, the interferometer arm should be as long as long as possible. This is because
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the detected signal is the differential change in arm length ∆l, which can be converted to
the gravitational wave strain h by

2h =
∆l

l
. (2.28)

Effectively, the arm length l is an amplification converting the gravitational wave strain
to the differential change via ∆l = 2lh. However, this is not true since the response of
the Michelson interferometer to the gravitational wave is as simply derived.

Suppose the gravitational wave has a "+"-polarization and the interferometer arms
are aligned along the x and y direction. Consider a photon traveling along the x direction,
the photon travels along an worldline in spacetime with an invariant interval of

dτ 2 = −gµνdxµdxν
= −(ηµν + hµν)dxµdxν ,

(2.29)

where gµν is the metric tensor, ηµν is the Minkowski metric with a (−,+,+,+) signature,
and hµν is the metric perturbation due to the gravitational wave. For a photon traveling
along the x direction, the invariant interval is zero and this gives

dt2 =
1

c2
(1 + h11(t)) dx

2 (2.30)

The time that the photon takes to complete a round trip tround along the interferometer
arm is then the sum of the forward and the return time given by

∫ tround

0

dt =
1

c

∫ l

0

√
1 + h11(t) dx−

1

c

∫ 0

l

√
1 + h11(t) dx . (2.31)

With a binomial expansion of
√

1 + h11(t) = 1 + h11(t)/2 + O(h11(t)
2) and keeping the

first order terms of h11(t), this gives the return time

tround =
2l

c
+

1

c

∫ l

0

h11(t) dx . (2.32)

As for a photon traveling along the y direction, the round trip time has a similar
express but with the element h22(t) = −h11(t). This gives a difference in return time of

∆tround =
2

c

∫ l

0

h11(t) dx , (2.33)

which can be approximated by

∆tround ≈ 2

∫ l/c

0

h11(t) dt . (2.34)
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This can be interpreted as a differential change in arm length

∆l = c∆tround = 2c

∫ l/c

0

h11(t) dt . (2.35)

Assuming that the gravitational wave is sinusoidal, i.e. h11(t) = h cos (ωgwt), where ωgw

is the angular frequency of the gravitational wave, this gives

∆l = 2c

∫ l/c

0

h cos (ωgwt) dt

=
2hc

ωgw

sin (ωgw
l

c
)

=
2hc

ωgw

sin (2π
l

λgw
) ,

(2.36)

where λgw is the wavelength of the gravitational wave. Here, it is clear that the maximum
differential change in arm length can be found by setting the arm length

l =
λgw
4
. (2.37)

For a gravitational wave at 100Hz, the optimal arm length is roughly 750 km, which is
roughly 1/9 the radius of the earth. Clearly, building a Michelson interferometer that
long does not seem practical and alternative strategies need to be sought.

2.2 Optical cavity

2.2.1 Folded Interferometer

As discussed in Sec. 2.1.3, the optimal arm length for a simple Michelson interferometer
is impractically long. Instead, consider a not so simple Michelson interferometer where
the optical path is folded. This is achieved by placing an mirror at the each input of the
interferometer arm next to the beamsplitter. The input mirrors have openings for the
beam to enter and exit the interferometer arm. The input mirrors and the end mirrors
face the each other such that the laser beam in each arm travels N round trips before
recombination. This effectively increased the arm length and downsized the interferometer
by N times, making the length scale more reachable. Suppose it is possible to afford an
arm length of 4 km, the corresponding round trips needed is roughly N = 188. Still, a
folded Michelson interferometer can be difficult to achieve due to the diffraction of light[5].
To achieve a folding scheme, one needs to build meter-scale mirrors, which can be difficult
to engineer to tight specifications such as reflectivity and surface smoothness [5].

20 Optimizing Active Isolation Systems in Gravitational-Wave Detectors



2.2. OPTICAL CAVITY

2.2.2 Fabry-Perot cavity

Instead of using a big mirror with an opening, the folded optical paths can superpose
on top of each other. This can be achieved by using a partially reflective mirror at the
input so the light can leak into the interferometer arm. Such configuration is called a

Figure 2.3: Fabry-Perot cavity.

Fabry-Perot cavity and it is shown in Fig. 2.3. The Fabry-Perot cavity is formed by two
partially reflective mirrors with amplitude reflectivity r1, r2 and amplitude transmissivity
t1, t2. The two mirrors are facing each other and are placed with a separation distance
of l. As can be seen, the input laser has an electric field of Ein and due to the partial
reflection of the mirrors, this gives 3 additional light fields Erefl, Ecav, and Etrans, which
corresponds to the electric fields of the reflected light, the light inside the cavity, and the
transmitted light, respectively.

The reflected light is a superposition of, the light that gets reflected before entering
the cavity, −r1Ein, the light that transmitted into the cavity but is reflected by the second
mirror and transmitted through the first mirror, t1r2t1Eine

−i2kl, and so on. The electric
field of the reflected light can then be expressed as

Erefl = −r1Ein + r2t
2
1Eine

−i2kl + r1r
2
2t

2
1Eine

−i4kl + r21r
3
2t

2
1Eine

−6kl . . .

= −r1Ein + r2t
2
1Eine

−i2kl

∞∑

n=0

(
r1r2e

−i2kl
)n
.

(2.38)

The last term is just an infinite sum of a diverging geometry series so it can finally be
written as

Erefl = −r1Ein + r2t
2
1Eine

−i2kl 1

1− r1r2e−i2kl

=

(
−r1 +

r2t
2
1e

−i2kl

1− r1r2e−i2kl

)
Ein .

(2.39)

Here, the amplitude reflectivity of the Fabry-Perot cavity can be written as

rFP =

(
−r1 +

r2t
2
1e

−i2kl

1− r1r2e−i2kl

)
(2.40)

such that Erefl = rFPEin Similarly, the electric field of the transmitted electric field can
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be written as

Etrans = t1t2Eine
−ikl + r1r2t1t2Eine

−i3kl + t1r
2
1r

2
2Eine

−i5kl + . . .

= t1t2Eine
−ikl

∞∑

n=0

(
r1r2e

−i2kl
)n

=
t1t2e

−ikl

1− r1r2e−i2kl
Ein .

(2.41)

This gives the amplitude transmissivity of the Fabry-Perot cavity

tFP =
t1t2e

−ikl

1− r1r2e−i2kl
. (2.42)

Finally, the electric field of the light that is trapped in the cavity (at mirror 1 traveling
towards mirror 2) reads

Ecav = t1Ein + t1r1r
2
2Eine

−i2kl + . . .

=
t1

1− r1r2e−i2kl
Ein .

(2.43)

Since the reflectivity r1 and r2 are less than 1, it is easy to see that the electric field inside
the cavity attains a maximum at 2kl = 2nπ, where n = 1, 2, . . . . This gives the resonance
condition

2l = nλ , (2.44)

where λ is the wavelength of the laser. In other words, the Fabry-Perot cavity is said to
be in resonance when the round trip distance is an integer multiple of the wavelength. In
this case, the light can be seen as being trapped between the mirrors, similar to a folded
interferometer.

To further examine the equivalence between the folded interferometer and the Fabry-
Perot cavity, it would be interesting to compare the phase changes of the light the due to
a shift ∆l between the mirrors. For the Fabry-Perot cavity, consider a special case with
t2 = 0 and r2 = 1, i.e. the end mirror is fully reflecting the light. Under the resonance
condition, the reflected electric field reads

Erefl =

(
−r1 +

t21e
−i2k∆l

1− r1e−i2k∆l

)
Ein . (2.45)

As can be seen, the reflected electric composes of an term corresponding to the light field
that has never entered the cavity, −r1Ein. The other term can be seen as the light that
enters the cavity and escaped, it reads

Eesc =
t21e

−i2k∆l

1− r1e−i2k∆l
Ein . (2.46)
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Suppose the light escaping from the cavity can be written in the form Ae−iϕ, the fractional
change of phase ∆Φ due to a change in cavity length ∆l is approximated, to the first order,
as (

∆ϕ

∆l

)

FP

=
2k

1− r1
. (2.47)

In comparison, for a folded cavity, the phase of the beam picks on a phase of 2k∆l per
round trip. This gives the a fractional phase change of

(
∆ϕ

∆l

)

Folded

= 2kN , (2.48)

for the folded cavity. By comparing Eqn. (2.47) and (2.48), it is easy to see that the
equivalent number of round trips in a Fabry-Perot cavity can be written as

NFP,ϕ =
1

1− r1
. (2.49)

As a verification, for r1 = 0, i.e. the first mirror does not exist, the number of equivalent
round trips is 1, which reduces to the Michelson interferometer case. It is worth mentioning
that NFP,ϕ denotes the equivalent round trips by a phase consideration. There exist
another equivalent number of round trips that is derived from the storage time of the
cavity, i.e. the time that takes the light to escape as the input beam is shut. For details,
refer to the folded interferometer arm chapter in Ref. [5].

With the folded scheme made possible with Fabry-Perot cavities, the photon shot noise
and radiation pressure noise can be re-evaluated. A folded interferometer is equivalent to
a simple Michelson interferometer with an arm length of Nl. The photon shot noise can
simply be written by replacing l by Nl in Eqn. (2.20), giving a shot noise that is N times
lower, i.e.

hshot(f) =

√
2

2Nl

√
ℏcλ
4πPin

, (2.50)

assuming an operation at the dark fringe. As for the radiation pressure noise, it is en-
hanced in two ways. Firstly, the radiation pressure introduces a fluctuation test mass
displacement, which induces a fluctuation in arm length that is 2N times that of an
unfolded arm. Secondly, since the light is encounter each mirror N times, the force is
multiplied by a factor of N . With l replaced by Nl in Eqn. (2.25), this gives the radiation
pressure noise for a Fabry-Perot interferometer of

hrad(f) =
N

mf 2l

√
2ℏPin

π3cλ
. (2.51)
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The corresponding optimal input laser power is

Pin =
1

4

πcmλf 2

N2
. (2.52)

With the same parameters used in Sec. 2.1, assuming a round trip number of N ∼ 100,
this gives an optimal power in the 104W scale and for f = 10, the optimal power is in the
102W scale, which is much more realizable. As can be seen, with the Fabry-Perot cavity,
it solves not just the optimal arm length problem but also the optimal power problem.

2.2.3 Power and signal recycling cavities

Figure 2.4: Dual-recycling Fabry-Perot Michelson Interferometer. (Not to scale)

Recall that the gravitational-wave detector is a null instrument, meaning that the
light power detected by the photodiode is almost zero at all times. By conservation of
energy, this means that the almost all light that goes into the interferometer eventually
exits the interferometer via the input, as if the interferometer is reflecting light back to
the input. While the reflected light at the input would have been eventually dissipated,
this is a waste of energy. To make better utilization of the laser, the exiting light can be
reflected back into the interferometer, which effectively increase the input power of the
interferometer. This is achieved by placing a partially reflective mirror, which is known
as the power recycling mirror, between the input laser and the beamsplitter, as shown
in Fig. 2.4. The power recycling mirror forms a optical cavity with the interferometer,
enhancing the input power of the interferometer by the number of round trips N . With
the power recycling scheme, the shot noise of the detector is reduced by a factor of

√
N .
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Similarly, a partially reflective mirror can be between the photodiode and the beam-
splitter. The mirror in this configuration is called the signal recycling mirror as shown
in Fig. 2.4. Instead of the laser frequency fl, the signal recycling cavity can be set up to
resonant at a different frequency fl ± fsig, where fsig is the signal frequency [5]. Since the
gravitational wave signal is encoded on the sideband through phase modulation of the
laser frequency at frequency fsig. By reflecting the signal sideband to the interferometer
allows it to be enhanced.

2.3 Noises in gravitational-wave detectors

Detecting a gravitational waves means a search of extremely tiny signals. A detector look-
ing for such small signals is ultimately limited by various noise sources. And, suppressing
these noises and hence achieving better sensitivity is one of the everlasting goals in experi-
mental gravitational-wave physics. There are several noise sources in a gravitational-wave
detector, including quantum noise, Newtonian noise, thermal noise, laser noise, and seis-
mic noise, to list a few. Here, a few important noise sources are short-listed for a brief
introduction.

2.3.1 Quantum noise

Quantum noise refers to the detection noise that related to the quantum nature of the laser
used in the detector. The two fundamental components of the quantum noise, photon shot
noise and radiation pressure noise, have already been briefly discussed in Sec. 2.1.1, 2.1.2,
and 2.2.2. And, this section only serves as a brief reiteration. The photon shot noise refers
to the noise resulting from counting the number of photons, which is a random variable
that follows the Poisson distribution. The shot noise has is a white noise and it scales
with the input laser power as

√
1/Pin. The radiation pressure noise is resulting from the

fluctuating number of photons exerting force on the test masses of the detector. This leads
to a arm length fluctuation and the radiation pressure noise scales as

√
Pin. Comparing the

laser power scaling between the photon shot noise and radiation pressure noise, it is clear
that the two are not simultaneously minimizable by a increasing or decreasing of the laser
power. Instead, there exists a optimal trade-off between the shot noise and the radiation
pressure noise via an optimal choice of laser power. With the optimal laser power, the
resulting quantum noise is called the standard quantum limit, which is a fundamental
limit of a gravitational-wave detector.

2.3.2 Thermal noise

The mirrors of the interferometer and the structures that are holding them in place are
thermally connected to the surrounding environment and are allowed to exchange energy
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in the form of heat, which translates to random motion. The random flow of energy can
cause the mirror surface to fluctuate and eventually causing the optical path to fluctuate
with it. Internal friction from materials can also be translate to thermal noise and this
can be estimated from the fluctuation-dissipation theorem [5]. The thermal noise of such
systems scales with

√
kBT , where kB is the Boltzmann constant and T is the temperature

and has a frequency scaling of f 5/2. This calls for the use of materials with low mechanical
loss, or in other words, high quality factor, Q. For this reason, fused silica [21] was chosen
for LIGO and Virgo as the material for the test mass substrate and for suspension wires
due to its high quality factor (∼ 107) at room temperature. As for KAGRA, sapphire
was chosen instead due to its high thermal conductivity and high Q value at cryogenic
temperatures [22].

2.3.3 Seismic noise

Seismic noise is due to the vibration of the terrestrial environment. As opposed to the
quantum noise and thermal noise there are not fundamental constants, such as the Planck
constant ℏ and Boltzmann constant kB, that sets the scale of the seismic noise. The seismic
noise is due to natural phenomenon such as ocean waves and atmospheric activities.
Human activities also contributes to the seismic noise in a local scale. The seismic noise
is not a static noise and the amplitude can vary by orders of magnitude from time to
time. Also, the seismic noise at different locations may also vary due to different levels of
activity and geological reasons. Therefore, the seismic noise can be hard to derive from
first principles. Instead, the seismic noise is characterized from worldwide observations of
seismic noise. The resulted models are the well-known Peterson low noise model (NLNM)
and high noise model (NHNM) [23]. They are obtained by combining the seismic data
measured from all around the world and modeling the upper and lower bounds.

Fig. 2.5 shows the Peterson noise models and the KAGRA mean seismic noise. There
are several features in the seismic noise spectrum that are worth mentioning. First of all,
at 10Hz, the KAGRA mean seismic noise reads ∼ 10−11m/

√
Hz. For an interferometer

baseline in the order of 103m, the seismic noise correspond to a strain noise in the order of
∼ 10−14 /

√
Hz. This calls for a required suppression of at least 107 times if gravitational

waves in the order of 10−21 /
√
Hz were to be observed.

At frequencies around 0.2Hz, there is a peak in the seismic noise spectrum that is
due to seismic activity known as the secondary microseism. The primary microseism is
located at around 0.06Hz and is also observable in both noise models and the KAGRA
seismic noise in Fig. 2.5. The root mean square value of the KAGRA ground motion,
integrated from high frequency down to 0.1Hz, is in the order of 10−7m, and in some
cases, in the order of 10−6m [24]. Recall that the interferometer needs to be operated
at the dark fringe, meaning that the differential displacement of the interferometer arms
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Figure 2.5: Seismic noise. Blue solid: Peterson low noise model (NLNM). Orange dashed:
Peterson high noise model (NHNM). Green dash-dot: KAGRA mean seismic noise along
the Y-arm of the interferometer.

need to stay well within a fraction of the wavelength, which is in the order of 10−6m for
an infrared laser. This means that the suppression of seismic noise is not limited to the
detection band of the gravitational-wave detection, but also extends to lower frequency,
or else the interferometer would not be able to operate at all. Therefore, the suppression
of seismic noise is very important. The following chapters shall continue on the discussion
of this interesting topic.
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Chapter 3

Vibration Isolation

Seismic noise can affect a gravitational-wave detector in two ways. First of all, the seismic
noise is an important source of displacement noise that can cause the test masses of the
gravitational-wave detector to vibrate at the detection band. With an interferometer
baseline in the order of 103m, the displacement level of the test masses must be at least
below 10−18m/

√
Hz for detecting gravitational waves that causes a strain in the order

of 10−21. At 10Hz, the seismic noise at KAGRA is around 10−11m/
√
Hz. This would

require the seismic noise transmitted to the test masses to be attenuated by at least 107

times above 10Hz. In gravitational-wave detectors, this is achieved by suspending the test
masses as multiple pendulums, which passively isolate the test masses from the seismic
noise.

At lower frequencies, seismic isolation is as important. The seismic noise spectrum
is typically highest at frequency between 0.1Hz - 0.5Hz. This peak is known as the
microseismic peak and is caused by the ocean waves. The magnitude of this peak depends
on the weather. At times, it could cause the ground motion to attain a displacement
level higher than 1 µm, which is comparable to the wavelength of the main laser used
at KAGRA (1064 nm). Moreover, the resonances of the suspension amplifies the seismic
noise, causing the test masses to move excessively. This can result in an misalignment
of the optics and eventually causing the interferometer to dysfunction. Therefore, the
displacement level of the test masses also need to be suppressed at lower frequencies.
This kind of vibration isolation is achieved by control systems using active elements such
as sensors and actuators. The basic principles of passive isolation and active isolation are
discussed in Sec. 3.1 and 3.2, respectively.
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3.1 Passive isolation

3.1.1 Oscillators: spring-mass and pendulums

The fundamental principle of passive vibration isolation is based on the dynamics of the
harmonic oscillator, such as a spring-mass system and a pendulum. Consider a spring-

Figure 3.1: Spring mass system.

mass system as shown in Fig. 3.1. In the figure, a mass m is attached to a suspension
point via a spring k. The suspension point is free to move and it has a displacement x(t).
The displacement of the mass xm(t), assuming an equilibrium position at xm(t)−x(t) = 0,
is govern by the differential equation

m
d2xm(t)

dt2
= −k [xm(t)− x(t)] . (3.1)

Now, suppose the suspension point is oscillating at an angular frequency ω, it can be
described by

x(t) = Aeiωt , (3.2)

where A is the amplitude of the oscillation, i is the imaginary number, ω is the angular
frequency, and t is time. Let us construct a trial solution

xm(t) = Ame
i(ωt+ϕ) , (3.3)

where Am is the amplitude of the oscillation of the mass and ϕ is the relative phase
between x(t) and xm(t). Substituting the trial solution (3.3) into the governing equation
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(3.1) gives

−mω2Ame
i(ωt+ϕ) = −k

[
Ame

i(ωt+ϕ) − Aeiωt
]

−mω2Ame
iϕ = −k

[
Ame

iϕ − A
]

Ame
iϕ =

k
m

k
m
− ω2

A

(3.4)

It is easy to see that when ω2 < k/m, the phase is ϕ = 0, and when ω2 > k/m, the phase
is π (or an even integer multiple of π). However, at ω2 = k/m, the phase is undefined
and the amplitude Am explodes1. For this reason, ωn =

√
k/m is called the resonance

frequency of the spring-mass system, where the motion of the suspension point is being
amplified. At ω ≪ ω0, Eqn. (3.4) reads Am ≈ A, so the mass follows almost exactly the
motion of the suspension point, i.e. the motion is not attenuated. However, at ω ≫ ω0,
the amplitude reads Am ≈ (ω0/ω)

2A, i.e. the suspension point displacement is attenuated
by a factor of (ω0/ω)

2. For example, suppose the oscillation frequency is 10 times greater
than then resonance frequency, the attenuation factor is approximately 100 times. As can
be seen, by suspending the mass with a spring, the displacement level of the mass can be
attenuated at frequencies above the resonance and this is basically how passive isolation
works.

To put things into perspective, consider a case where test masses in a gravitational-
wave detector are suspended by the spring-mass mechanism. To achieve the aforemen-
tioned seismic noise attenuation of 107 at 10Hz, the resonance frequency of the spring-
mass system needs to be as low as ∼ 0.003 16Hz (a period of ∼ 5min). Suppose the
spring-mass mechanism is achieved by suspending the test mass like a pendulum, the
resonance frequency can be computed as ωn =

√
g/l, where g is the acceleration due to

gravity and l is the length of the pendulum. Here, small angles are assumed, which would
be valid given the nature of small displacement in gravitational-wave detectors. The re-
quired resonance frequency then converts to a pendulum length of roughly 24 841m, which
is just 30 times taller than the tallest building on Earth. Clearly, it is not practical to build
a pendulum that tall and alternative designs must be sought. In reality, passive isolation
in gravitational-wave detectors rely on two other mechanisms, anti-springs and stacked
spring-mass systems. The former adds negative stiffness to a spring-mass system, which
makes low resonance frequency achievable in a relatively compact system. And, the latter
allows a higher-order attenuation, which makes high seismic noise attenuation achievable
with multiple spring-mass systems with resonance frequencies that are not unreasonably
low.

1Of course, the amplitude of the mass cannot be amplified indefinitely in reality. This is due to energy
loss via viscous damping.
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3.1.2 Anti-springs

In KAGRA, there are two anti-spring mechanisms, geometric anti-springs (GAS) [25] and
inverted pendulum. GAS filters are mainly used for vibration isolation along the vertical
direction2. As for the inverted pendulum, it is used as the first seismic isolation stage to
isolate seismic noise along the horizontal direction. The inverted pendulum can be tuned
to a resonance frequency lower than 0.1Hz and hence KAGRA vibration isolation systems
with an inverted pendulum is also capable of attenuating the secondary microseismic peak.

Geometric anti-spring

Figure 3.2: (a): Conceptual 2D geometric anti-spring. (b): An equivalent model.

GAS filters, providing vibration isolation in the vertical direction, are essentially hor-
izontally compressed spring blades. Fig. 3.2 subplot (a) shows a 2D representation of the
GAS filter. The spring blades are metal cantilevers that are originally flat. But, then the
two blades are compressed horizontally towards the mass, the blades bend upward, giving
the signature fishing rod shape of a GAS filter. The compressed spring blades has two
effects on the suspended mass. Firstly, they act as a vertical spring hanging the mass, like
a fishing rod. This alone provides some vertical isolation via the spring-mass mechanism.
Secondly, they provide a horizontal compression on the mass in the equilibrium position.
And, when the mass deviates from the equilibrium position, the compression force has a
component in the same direction as the deviation, which is opposite to the vertical force
provided by the first effect. This effectively reduces the restoring force in the vertical
direction, achieving the anti-spring effect.

The GAS filter can be modeled by a three-spring system as shown in subplot (b) in
Fig. 3.2. As can be seen, the suspended mass is attached to three springs, two horizontally
and one vertically. The horizontal springs have a spring constant of kx and are compressed

2The reason for seismic isolation along the vertical direction is due to the fact that the Earth is round
while the interferometer arm is straight. With a interferometer baseline of 3 km and an Earth radius of
∼ 6000 km, the vertical vibration (in the radial direction) translates to a coupling of 3/6000 = 1/300 in
the direction along the interferometer arm.
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by a length of xc. The vertical spring have a spring constant of ky. Again, the suspension
point and the suspended mass has a vertical displacement of y(t) and ym(t), respectively.
Suppose the horizontal springs have a nominal length of x0, as the vertical spring is being
stretched by an amount of ym(t)− y(t), the length of the horizontal spring becomes

xspring(t) =

√
[ym(t)− y(t)]2 + [x0 − xc]2 (3.5)

The vertical force that each horizontal spring that acts on the suspended mass is

Fh(t) = kx [x0 − xspring(t)] sin θ , (3.6)

where
θ = sin−1

(
ym(t)− y(t)
xspring(t)

)
. (3.7)

This gives the vertical force due to a horizontal spring

Fh(t) = kx


 x0√

[ym(t)− y(t)]2 + [x0 − xc]2
− 1


 [ym(t)− y(t)] . (3.8)

Now, consider a binomial expansion of the first term:

1√
[ym(t)− y(t)]2 + [x0 − xc]2

=
1

(x0 − xc)
√
1 +

(
ym(t)−y(t)

x0−xc

)2

=
1

x0 − xc

[
1 +O

([
ym(t)− y(t)
x0 − xc

]2)]
.

(3.9)

Linearizing the vertical force to the first order of ym(t)− y(t) gives

Fh(t) = kx

(
xc

x0 − xc

)
[ym(t)− y(t)] . (3.10)

With the vertical force due to the compressed horizontal springs derived, the equation of
motion of the suspended mass now reads

m
d2ym(t)

dt2
= −ky [ym(t)− y(t)] + 2Fh(t)

= −
(
ky − 2kx

xc
x0 − xc

)
[ym(t)− y(t)] ,

(3.11)

where ky − 2kxxc/(x0 − xc) is the effective spring constant along the vertical direction.
While xc < x0, it can be seen that the compression of the horizontal spring is indeed
contributing a negative stiffness and hence achieving the anti-spring effect.
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Inverted pendulum

Figure 3.3: An inverted pendulum.

The inverted pendulum is used to isolate a platform from horizontal vibration. To
illustrate its anti-spring effect, consider an inverted pendulum as shown in Fig. 3.3. The
mass m is suspended from the suspension point via a massless inverted pendulum leg with
length l. The leg is connected to the suspension point via a flexible joint with a blending
stiffness of kθ. The equation of motion of the suspended mass reads

m
d2xm(t)

dt2
= −kθ

l
θ +mg sin θ , (3.12)

where θ is the angle between the inverted pendulum and the vertical. With the small
angle approximation, the angle θ can be written as

θ =
xm(t)− x(t)

l
. (3.13)

Substituting θ into the equation of motion gives

m
d2xm(t)

dt2
= −kθ

l2
[xm(t)− x(t)] +mg sin

(
xm(t)− x(t)

l

)
. (3.14)

Again, linearization to the first order of xm(t)− x(t) gives

m
d2xm(t)

dt2
= −

(
kθ
l2
− mg

l

)
[xm(t)− x(t)] , (3.15)

where kθ/l2 − mg/l is the effective stiffness. To enhance the anti-spring effect, one can
simply increase the mass m and this is exactly how the inverted pendulums at KAGRA
were tuned to have resonance frequency below 0.1Hz.
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3.1.3 Cascaded spring-mass systems

In Sec. 3.1.1, it is shown that a simple spring-mass system can be used to achieve an
displacement attenuation of (ωn/ω)

2, where ωn is the angular resonance frequency of the
spring-mass system and ω is the angular frequency of the vibration of the suspension point.
Here, the frequency ω is arbitrary, and it fact, the displacement of the suspension point can
contain a superposition of vibrations at various frequencies and the attenuation relation
is still valid for all these independent vibrations. In this case where the suspension point
is a stochastic process, e.g. the seismic noise, its frequency content above the resonance
frequency of the spring-mass system attenuated by a frequency-dependent attenuation of
(ωn/ω)

2 and this is known as low-pass filtering. And, the exponent of the attenuation is 2,
therefore the simple spring-mass system is referred as a second-order low-pass filter. With
a second-order filtering, it was shown that the resonance frequency has to be unreasonable
low in order to observe gravitational wave. While it was shown that the anti-spring effect
can be manipulated to reduce the resonance frequency of a spring mass system, resonance
frequencies below 10mHz is still unrealistic in practice due to non-linear effects leading to
bistability or even instability. For example, the lowest resonance frequency of the inverted
pendulums at KAGRA is around ∼ 50mHz, which is still one order of magnitude higher
than that of the required. To achieve even higher level seismic attenuation at higher
frequencies, one might consider an increase in filter order instead and this can be achieved
by cascading spring-mass systems.

Figure 3.4: Double spring-mass system.

To see how stacking spring-mass systems can increase the order of low-pass filtering,
consider a double spring-mass system as shown in Fig. 3.4. Again, here the displacement
of the suspension point x(t) is assumed to be

x(t) = Aeiωt (3.16)

and the displacements of the first and second masses are

x1(t) = A1e
i(ωt+ϕ1) , (3.17)
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and
x2(t) = A2e

i(ωt+ϕ2) , (3.18)

respectively, where A, A1, and A2 are the oscillation amplitudes and ϕ1 and ϕ2 are the
relative phases. The governing equations for the two masses are

m1
d2x1(t)

dt2
= −k1 [x1(t)− x(t)]− k2 [x1(t)− x2(t)] (3.19)

and
m2

d2x2(t)

dt2
= −k2 [x2(t)− x1(t)] . (3.20)

Following a similar analysis in Sec. 3.1.1 yields

A1e
iϕ1 =

k1
m1

(
k2
m2
− ω2

)

ω4 −
(

k1+k2
m1

+ k2
m2

)
ω2 + k1k2

m1m2

A (3.21)

and

A2e
iϕ2 =

k2
m2

k2
m2
− ω2

A1e
iϕ1

=
k1k2
m1m2

ω4 −
(

k1+k2
m1

+ k2
m2

)
ω2 + k1k2

m1m2

A

=
k1k2
m1m2

(ω2 − ω2
1) (ω

2 − ω2
2)
A ,

(3.22)

where ω1 and ω2 are two angular resonance frequencies such that

ω2
1, ω

2
2 =

(
k1+k2
m1

+ k2
m2

)
±
√(

k1+k2
m1

+ k2
m2

)2
− 4 k1k2

m1m2

2
, (3.23)

which can be easily shown as positive values. As can be seen from Eqn. (3.22), as ω ≫ ω1

and ω ≫ ω2, the amplitude A2 can be approximated as

A2 ≈
1

ω4

k1k2
m1m2

A , (3.24)

which is clearly a forth-order attenuation of the displacement of the suspension point.
However, the attenuation at the first stage, i.e. mass 1, remains to be second order.

Increasing the number of spring-mass stages can effectively increase the order of low-
pass filtering, achieving higher-order attenuation at high frequencies. However, the result
for systems with more than 2 stages can be more difficult to compute algebraically. To
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layout the steps, one needs to express the government equations in an matrix form

−ω2M




x1

x2
...
xN



+K




x1

x2
...
xN



=




k1x

0
...
0



, (3.25)

where M is the mass matrix, K is the stiffness matrix, and here ẍj = ω2xj, j = 1, 2, . . . , N

is assumed. And then, compute (−ω2M+K)
−1 to obtain the attenuation at each stage.

While M is a diagonal matrix composes of the values of the masses, it is easy to show that
the denominator of (−ω2M+K)

−1, i.e. det (−ω2M+K), is a 2N th-order polynomial
of ω. It follows that that the attenuation at the last stage of a N -stage spring-mass
system is proportional to 1/ω2N . And, at last, with a combination of the anti-spring
effect, i.e. lowering the spring constants, and increasing the number of stages of spring-
mass systems (or pendulums), the required attenuation for observing gravitational waves
is easily achievable with a relatively practical form factor of systems. These systems are
referred to suspensions or vibration isolation systems and some real versions of suspensions
are shown in Chapter 4.

3.2 Active isolation

This idea of active isolation is to, instead of relying of mechanical components such as
springs or pendulums, use an actuator to apply a force on the suspended object to reject
the perturbed motion. The required force can be derived from the sensed displacement of
the suspension point or the suspension body. The former is known as feedforward control
while the latter is known as feedback control. The two active isolation schemes can be
used simultaneously to achieve disturbance rejection at different frequency bandwidths.
Notably, the two schemes are utilized in LIGO for active seismic isolation [26] while Virgo
[27, 28] and KAGRA [29, 28, 30, 31] only utilize feedback control. In this section, the feed-
forward and feedback control schemes are discussed in Sec. 3.2.2 and 3.2.3, respectively.
In Sec. 3.2.1, some prerequisite concepts such as transfer functions and block diagrams
are introduced as an interlude.

3.2.1 Interlude: Transfer functions

Before going into the details of active isolation, it is worth introducing the concept of a
transfer function, which would simplify the discussion of active isolation. The transfer
function represents a linear time-invariant (LTI) system with one input and one output.
Mathematically, it is the ratio between the output and the input variables in the Laplace
domain, i.e. the amplification / attenuation. To exemplify, consider a single spring-mass
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system discussed in Sec. 3.1.1. Here, the displacement of the suspension point x(t) is an
input and the displacement of the mass xm(t) is the output. Taking the Laplace transform
of the equation of motion (3.1) gives

L
{
m
d2xm(t)

dt2
+ kxm(t)

}
= L{kx(t)}

(
ms2 + k

)
Xm(s) = kX(s)

Xm(s)

X(s)
=

ω2
n

s2 + ω2
n

,

(3.26)

where L{·} denotes the Laplace transform, s is the Laplace variable and is a complex
number, X(s) and Xm(s) are the Laplace transform of x(s) and xm(t), respectively, and
ωn ≡

√
k/m is the angular resonance frequency of the spring-mass system. Here, as

can be seen, by evaluating the Laplace variable along the positive imaginary axis, i.e.
s = iω, gives the frequency-dependent attenuation relation ω2

n/(ω
2
n − ω2) as shown in

Eqn. (3.4). This is called the frequency response of a transfer function. The frequency
response is a complex-valued frequency series and therefore cannot be plotted simply in
one plot. Instead, the frequency response of a transfer function is shown as a magnitude
plot and a phase plot, where the magnitude represents the amplification / attenuation
(and sometimes referred as “gain”) and the phase represents the relative phase between
the input and output signals. The combination of the two plots is called a Bode plot and
is often used to characterize frequency-dependent relationships between signals.

The introduction of the transfer function allows one to represent dynamic processes
with block diagrams. In a block diagram, each arrow represents a process variable, such
as the displacements, and each block represents a system corresponding to a transfer
function. Fig. 3.5 shows a block diagram representing the aforementioned spring-mass

Figure 3.5: The block diagram representation of a spring-mass system.

system. The diagram represents an equation

Xm(s) = Px(s)X(s) , (3.27)

where
Px(s) ≡

ω2
n

s2 + ω2
n

(3.28)

is the transfer function between the suspension point displacement and the mass displace-
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ment and is sometimes called the “plant”. As can be seen, the block diagrams conveniently
represents the dynamics of the spring-mass system. From here, more complicated sys-
tems, such as the feedforward control and feedback control systems, can be represented
by interconnecting the process variables via junctions.

3.2.2 Feedforward control

Suppose there is an actuator that can be used to apply a force to the mass of the spring-
mass system shown in Fig. 3.1. The force then can be used to cancel, or at least attenuate,
the motion of the mass due to the motion of the suspension point. With an external force,
the equation of motion of the suspended mass reads

m
d2xm(t)

dt2
+ kxm(t) = kx(t) + f(t) , (3.29)

where f(t) is the external force applied on the suspended mass. It is easy to see that when
the force is set to f(t) = −kx(t), then the suspended mass is completely decoupled from
the motion of the suspension point. And, this can be achieved by having a measurement
of x(t) and then converting that sensed signal to an actuation signal via a multiplicative
factor −k. Such control method is known as feedforward control3 and the corresponding
spring-mass system is shown in Fig. 3.6. As shown in subplot (a), a sensor is placed at the

Figure 3.6: (a): Feedforward control of a spring-mass system. (b): Equivalent block
diagram of the feedforward control scheme.

suspension point measuring the displacement x(t). The signal is send to a feedforward
controller, which is represented by a transfer function Kff(s). The controller then outputs
a force f(t) that acts on the suspended mass.

Fig. 3.6 subplot (b) shows an equivalent block diagram representing the feedforward
control of a spring-mass system. Without loss of generality, the input-output relationship
can be easily derived as

Xm(s) = [Px(s) +Kff(s)P (s)]X(s) , (3.30)
3Note that the signal path points forward and hence the name “feedforward”.
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where P (s) is the transfer function from the actuation force F (s) to the displacement of
the suspended mass Xm(s), and is given by

P (s) =
1
m

s2 + k
m

. (3.31)

Here, the subscript is omitted due to its frequent use throughout the thesis. In Eqn. 3.30,
the feedforward controller Kff(s) is something that needs to be designed. Again, it is
obvious when the feedforward controller is set to Kff(s) = −Px(s)/P (s) = −k, the atten-
uation factor then becomes 0. However, this only serves as an ideal case for illustrating
the idea of feedforward control. In reality, the measurement of x(t) is not perfect. The
measurement contains noise and could ruin the passive isolation performance when it
is not properly filtered. Therefore, in practice, the feedforward controller needs to be
shaped to pass the signal at frequencies where signal-to-noise ratio is high and rolled-off
otherwise.

3.2.3 Feedback control

For feedforward control, the sensing element is placed on the suspension point. When the
actuation force is derived from a sensing element placed on the suspended object itself,
it comes a feedback control scheme shown in Fig. 3.7. In subplot (a), the displacement

Figure 3.7: (a): Feedback control of a spring-mass system. (b): Equivalent block diagram
of the feedback control scheme.

of the suspended mass xm(t) is measured by a sensor. The signal is negated and sent
to a feedback controller K(s), which then converts the measured signal to a feedback
force. The negation of the signal indicates a negative feedback system and this exists
for conventional reasons related to stability of the feedback. Again, the subscript for the
feedback controller is omitted because of its frequent use in later sections in the thesis.

Fig. 3.7 subplot (b) shows the block diagram representing the feedback control of the
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spring-mass system4. The displacement of the suspended mass can be derived as

Xm(s) = Px(s)X(s)− [K(s)P (s)]Xm(s)

=
1

1 +K(s)P (s)
Px(s)X(s) .

(3.32)

Recall that Px(s)X(s) is the natural response of the spring-mass system, the term 1/[1 +

K(s)P (s)] denotes an additional amplification / attenuation over the natural response.
The passive isolation Px(s) only attenuates seismic noise above the resonance frequency
but amplifies the noise at around the resonance frequency. With a feedback control
scheme, the resonances can be suppressed by shaping the controller K(s) such that
|K(jω)P (jω)| is higher than 1 around the resonance frequencies, where j denotes the
imaginary number. In fact, the feedback control scheme can provide additional suppres-
sion at any frequency as long as |K(jω)P (jω)| is higher than 1. The frequency band at
which |K(jω)P (jω)| is greater than 1 is referred to the control bandwidth. And, signals
within these frequencies are said to be controlled. Also, it is easy to see in Eqn. (3.32)
that as K(s)P (s) → ∞, the displacement of the mass is completely decoupled from the
motion of the suspension point. However, this is, again, only an ideal scenario. In reality,
the measurements contain noise and the major challenge of controller design is to shape
the controller such that it suppresses the motion while not injecting too much control
noise. Optimizing the feedback control system for active isolation is the central theme of
this thesis and the concept will be revisited in Part II and III.

It is worth mentioning that a major difference between feedforward control and feed-
back control is stability. The feedforward control is stable as long as all components, such
as the controllers and the plants, in the feedforward control schemes are internally stable.
However, this is not the case for a feedback control system and the controllers need to be
carefully selected to maintain the stability of the system. Let us define the closed-loop
transfer function G(s) as

G(s) ≡ 1

1 +K(s)P (s)
. (3.33)

The closed-loop transfer function can be represented as a fraction of polynomials, i.e.
G(s) = N(s)/D(s), where N(s) and D(s) are polynomials of s. The roots of the poly-
nomial N(s) are called “zeros” while the roots for the polynomial D(s) are called “poles”.
Mathematically speaking, the criterion for a stability closed-loop system is that the closed-
loop transfer function G(s) must not contain poles with positive real parts (unstable
poles). To show why this is the case, suppose G(s) contains a pole at λ, such that it can
be expressed as a partial fraction

G(s) =
a

s− λ + . . . , (3.34)

4Note that the signal path points backward and hence the name “feedback”.
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where a is an arbitrary constant. Then, the inverse Laplace transform gives

L−1{G(s)} = g(t) = aeλt + . . . . (3.35)

As can be seen, if λ contains a positive real part, then g(t) diverges as t increases, which
indicates instability. Therefore, the controller must be designed such that the closed-loop
transfer function contains no unstable poles.

In practice, there are two popular tools, Bode plot and Nyquist plot, that can be used
to identify the stability of a feedback system without knowing the poles of the closed-
loop transfer function. As mentioned previously, the Bode plot is a plot of the frequency
response of a transfer function. While the frequency response of a transfer function is
generally a complex-valued series, the Bode plot is composed of a magnitude plot and a
phase plot. To evaluate the stability of a closed-loop transfer function, the Bode plot of
the open-loop transfer function K(s)P (s) is plotted. The unity gain frequency is defined
as the frequency where the magnitude response |K(jω)P (jω)| has a value of 1. For a
stable closed-loop system, the phase response at the unity gain frequency must be above
−180◦. Also, there may be more than one unity gain frequencies and the above criterion
must be satisfied at all unity gain frequencies. At the unity gain frequency, the value
between the −180◦ and the phase response is called the phase margin, which is one of the
stability margins that is used to characterize the stability of a closed-loop system. Another
stability margin, gain margin, is referred to the relative magnitude between unity and the
magnitude response as phase response falls below −180◦. The gain margin corresponds
to the acceptable amplification of the open-loop transfer function before the closed-loop
system becomes unstable. In principle, the stability margins can be arbitrary as long as
the system is stable. But, in practice, typically, the phase margin is set above 30◦-60◦

and the gain margin is set to at least 1/3 (or −10 dB) to account for uncertainties in the
control system.

The Bode plot method works for a majority of cases. It is very easy to use and is by far
the most popular approach used in KAGRA. However, the Bode plot method could fail in
some cases and the Nyquist plot should be used for a proper analysis. The idea of using
a Nyquist plot is to identity unstable zeros in the characteristic equation 1 +K(s)P (s),
recall that the that the zeros of 1 + K(s)P (s) are the poles of the closed-loop transfer
function. The Nyquist plot can be obtained by evaluating 1 +K(s)P (s) along a contour
starting from −j∞ to j∞ and coming back to −j∞ via a semicircular arc on the right-half
of the complex plane. The contour is mapped to another complex plane via the function
1+K(s)P (s) resulting in the Nyquist plot. The Cauchy’s argument principle states that
the Nyquist plot encircles the origin in the clockwise direction equal to the number of
unstable zeros in 1 + K(s)P (s) minus the number of unstable poles in 1 + K(s)P (s).
Alternatively, the open-loop transfer function K(s)P (s) can be used as the map. In this
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case, the number of clockwise encirclement around the −1 point is counted. For a stable
plant, the closed-loop system is said to be stable the number of clockwise encirclement is
zero. From here, the closed-loop stability can determined.
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Chapter 4

KAGRA Vibration Isolation Systems

The KAGRA vibration isolation systems are tower suspensions that are capable of pro-
viding the necessary seismic isolation for the main optics of the gravitational-wave de-
tector. The multiple-pendulum composition of the suspensions provide the necessary
high-frequency passive seismic isolation for the main optics. Not all main optics need
to be as still as the test mass mirrors and they have different sensitivity requirements.
Hence, there exists multiple types of vibration isolation systems in KAGRA, each cor-
respond to a different extent of passive isolation. The different types of suspensions are
introduced in Sec. 4.1 Within a suspension, there are different types of suspension stages,
such as the pre-isolator and the marionette, serving different purposes in vibration isola-
tion. A brief introduction of these stages is given in Sec. 4.2. Nevertheless, each stage of
the suspensions are equipped with sensors and actuators, which allows the low-frequency
active isolation and active damping of the resonance motions of the suspension stages.
The various types of sensors and actuators used in KAGRA vibration isolation systems
are introduced in Sec. 4.3.

4.1 Types of vibration isolation systems

Fig. 4.1 shows the four types of vibration isolation systems in KAGRA, including the
Type-A [30, 31], Type-B [32, 29], Type-Bp [33], and type-C suspensions. As shown in the
figure, the Type-A suspension is a ∼ 13.5m tall suspension and it is the tallest and most
complicated vibration isolation systems among others. Listing stages from the ground
(top) to the optics (bottom), the Type-A suspension is composed of a pre-isolator, five
vertical GAS filters (including the one at the pre-isolator), a platform, a marionette,
an intermediate mass, and a test mass. Effectively, it is a 9-stage multiple pendulum
providing a horizontal seismic noise attenuation proportional to ∼ f−18 at high frequency.
The Type-A suspension provides the greatest amount of passive isolation and there are
four such vibration isolation systems at KAGRA, each suspending the test masses of the
gravitational-wave detector, as shown in Fig. 4.2. These test masses are the input and
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Figure 4.1: Types of vibration isolation systems in KAGRA. Retrieved from Refs. [32, 33].
Left to right: Type-A suspensions, Type-B suspensions„ Type-Bp suspensions, and type-
C suspensions. (Not to scale)

Figure 4.2: Optical layout of the KAGRA interferometer with suspension types labeled.
Retrived from Refs. [32, 33]. Red solid circle: Type-A suspensions. Yellow dashed circle:
Type-B suspensions. Green dash-dot circle: Type-Bp suspensions. Blue dotted circle:
Type-C suspensions.

end test masses along the X-arm and the Y-arm (ITMX, ITMY, ETMX, and ETMY)
(the directions of X and Y relative to the Earth are arbitrary but they are orthogonal)
which defines the 3-kilometer Febry-Perot cavities of the interferometer.

The Type-B suspensions can be seen as a truncated version of the Type-A suspension.
Its composition is very similar to that of the Type-A suspension, having an pre-isolator,
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three vertical GAS filters, an intermediate mass, and a test mass stage1. It has 5 pen-
dulums stages providing a ∼ f−10 horizontal seismic noise attenuation at high frequency.
Compared to the Type-A suspensions, there are a few differences besides having less
stages. First of all, the marionette stage is missing in the Type-B suspension and there-
fore the steering of the optics relies on the active components at the intermediate mass
and the optics stage. The Type-A payload, consisting of the marionette, the intermediate
mass, and the payload, hangs from the platform via four wires per stage. Their recoil
masses of main pendulums constitutes a multiple pendulum separate from the main pen-
dulum chain and are also hanging from the platform. In contrast, the Type-B payload,
consisting of the intermediate mass and the optics, hangs from the bottom filter (the last
vertical filter). And, the recoil masses do no compose a separate chain like that in the
Type-A suspension. Instead, they each hangs from the upper stage, i.e. the intermedi-
ate recoil mass hangs from the bottom filter and the optics recoil mass hangs from the
intermediate mass. There are four Type-B suspensions in KAGRA and they suspend the
signal recycling mirrors (SRM, SR2, and SR3) and the beamsplitter (BS), as shown in
Fig. 4.2.

The Type-Bp suspensions are supposed to be the compactified version of the Type-B
suspension and hence the suffix “p”, which stands for “pico”. But, the differences between
the Type-Bp and Type-B suspensions are significant. Firstly, the Type-Bp suspension do
not have the pre-isolator, unlike the Type-A and Type-B suspensions. Instead, the first
vertical filter, which is a standard filter, is attached on a motorized horizontal platform
that can be used to adjust the coarse alignment of the whole chain. The Type-Bp suspen-
sion is effectively a triple-pendulum, with the bottom filter, the intermediate mass, and
the optics being the three pendulums. The Type-Bp suspensions are used for the power
recycling mirrors including the PRM, PR2, and the PR3.

Nevertheless, the Type-C suspensions table-top suspensions that are significantly smaller
than the other suspensions. For this reason, multiple Type-C optics can share the same
vaccum chamber, such as the input and output optics of the input mode cleaner as shown
in Fig. 4.2. The Type-C suspensions are used for the auxiliary optics such as the input
and output mode cleaners. They contain actuators and sensors at the optics stage only
for the purpose of steering and active damping of the optics. There are no active seismic
isolation element in the Type-C suspensions. Therefore they are only briefly mentioned
here and further discussions are oriented around the Type-A, Type-B, and the Type-Bp
suspensions.

1The optics of the Type-B suspension are not the test masses of the gravitational-wave detector but
the optics stage is also referred to the test mass stage by convention.
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4.2 Suspension stages

The suspensions are composed of different suspension stages that serve different purposes
in vibration isolation. For example, the Type-B suspension contains a pre-isolator stage,
2 GAS filter stages (3 if counting the top filter in the pre-isolator), an intermediate mass
stage, and a test mass stage, as shown in Fig. 4.3. The different type of stages are the
building blocks of a suspension and, in this section, the function and the composition of
the suspension stages are explained.

Figure 4.3: Type-B suspension.

4.2.1 Pre-isolator

The pre-isolator is the first seismic isolation stage of the Type-A and Type-B suspension
and it interfaces the ground and the rest of the suspension and eventually the optics.
The pre-isolator is often referred to the inverted pendulum (IP), which is the most iconic
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structure in the pre-isolator. the inverted pendulum is a miniaturized version of the in-
verted pendulum of the Virgo suspension [34]. The three inverted pendulum legs connects
the pre-isolator base, which is the attached to the ground via an elastic flexure, and the
pre-isolator table This suspends the pre-isolator table like a stable inverted pendulum
and, with small displacements, the inverted pendulum legs effectively constrain the mo-
tion of the pre-isolator table on a horizontal plane. As shown in Fig. 4.4, arc weights are
placed along the edge of the pre-isolator, which adds weights to the inverted pendulum
and reducing its resonance frequency because of the anti-spring effect. In practice, thin
pieces of arc weights are added in a symmetric way until the resonance frequency becomes
low enough to attenuate the secondary microseism between 0.1Hz and 0.5Hz, but not
too long such that the inverted pendulum becomes bistable. Typically, the resonance
frequency is around 0.06Hz and 0.1Hz, providing seismic attenuation to the secondary
microseism of 4 to ∼ 11 times at 0.2Hz.

Figure 4.4: The Type-B pre-isolator.

There are three columns extending from the base, supporting a ring platform where
three LVDT assemblies around the pre-isolator table can be found. The LVDT stands
for linear variable differential transformer, which is a type of relative displacement sensor
to be described in Sec. 4.3.1. The assembly is composed of an LVDT measuring the a
relative displacement between the pre-isolator table and the ground, and a coil-magnet
actuator that can be manipulated to apply force approximately to the same direction
where the LVDT is sensing. The three LVDT directions spans the full control space of
the pre-isolator on the horizontal place so the pre-isolator can be fully controlled in two
horizontal directions and one rotational direction. On the same ring platform, three linear
stepper motors are attached. The sliding blocks of the stepper motors are connected to
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the pre-isolator table via soft copper blade spring so they do not alter the dynamics of
the inverted pendulum. But, the motorized sliding blocks can be used to adjust the
static alignment of the pre-isolator table since it has a signficantly larger dynamic range
compared to the LVDT. However, the stepper motors are too noisy to be used for feedback
control so they are turned off after the initial position adjustment.

On the pre-isolator table, besides the arc weights, there are the three geophone pods
and a top vertical filter. The geophones pods are attached along the circumference of
the pre-isolator like the LVDT assemblies. Inside the pod, there is an L-4C geophone
from Mark products and an pre-amplifier circult board designed by NIKHEF [29]. The
geophone converts the velocity, relative to an inertial frame, of the pre-isolator table to
voltage, which can be used in a feedback system for active isolation. As for the top vertical
filter, it is composed of three (or more) compressed spring blades forming one vertical anti-
spring that hangs the rest of the suspension chain. As part of the top filter, there is a
so-called “fishing rod”, named after its resemblance of a fishing rod, that is part of the
linear stepper motor assembly that serves the same purpose as those for the horizontal
direction. The top filter anti-spring is considerable larger than the standard filters that
forms the pendulum chains and the resonance frequency was tuned in situ to around
0.5Hz. The blade tips of the anti-spring blades are connected to the keystone, which
holds the suspension wire connecting to the stages below. There is an LVDT assembly
around the keystone that provide sensing and actuation of the keystone in the vertical
degree of freedom.

4.2.2 Standard filters

Figure 4.5: (a): The Type-B standard filter. (b): The interior of a standard filter

The standard filters are pendulums of the suspension. On one hand, the weight of the
filter assembly act as the mass of the pendulum. As it is hanged from an upper stage via
a single suspension wire, it literally acts as a pendulum providing passive isolation in the
horizontal direction. On the other hand, as shown in subplot (a) in Fig. 4.5, enclosed in
the standard filter is a GAS filter that suspends the next stage of the suspension, much
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like the top filter, providing passive isolation in the vertical direction. Everything related
to the GAS filter is similar to that of the top filter, i.e. it has an LVDT assembly and a
fishing rod, but in a smaller scale. While the standard filter can, in principle, move freely
subjected to the constrain of a pendulum, there is no sensors and actuators that can be
used to control these degrees of freedom. But, there is one exception, that is, the bottom
filter.

Figure 4.6: (a): Type-Bp bottom filter. (b): Type-B bottom filter.

The bottom filter is the last pendulum above the payload stages, such as the mari-
onette and the intermediate mass. In is very similar to the standard filter besides it can
be manipulated besides the GAS degree of freedom. The way it is manipulated is different
in that of the Type-A/Type-Bp and the Type-B systems. In the Type-A/Type-Bp sus-
pensions, there exists structures extended from the bottom filter enclosure, each holding
the primary coil of an LVDT, as shown in subplot (a) in Fig. 4.6 The secondary coils are
attached to a structure that extends from the base structure of the suspension (effectively,
the ground) so there are LVDTs measuring the relative displacement between the bottom
filter and the ground. There are six of such LVDT assemblies so the bottom filter can be
controlled in all six degrees of freedom.

As for the Type-B suspensions, the bottom filter cannot be controlled like those in the
Type-A and Type-Bp suspensions. Instead, for the Type-B suspensions (and Type-Bp),
there are four moving masses on top of the bottom filter that can be moved using piezo
linear actuators (picomotors), as shown in subplot (b) in Fig. 4.6. Moving the masses
changes the center of gravity of the bottom filter and hence determines the tilt of the
bottom filter. The tilt eventually translate to the tilt of the intermediate recoil mass.
Therefore, it can be used adjust the tilt of the intermediate recoil mass relative to the
intermediate mass. Like the stepper motors, the picomoters are too noisy to be used for
feedback control purpose and hence they are only used for initial adjustments.

4.2.3 Marionette and intermediate stages

The marionette and the intermediate masses stages above the suspended optics. In the
case of the Type-A suspension, the marionette suspends from a transitional stage called
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Figure 4.7: (a): The intermediate mass and recoil mass. (b): Half section view.

the platform, which is suspended from the bottom GAS filter. The intermediate mass
is than suspended from the marionette. In the case of Type-B and Type-Bp suspen-
sions, there is no marionette stage. Instead, there’s only the intermediate mass stage.
The intermediate mass stage in the Type-A adds an extra f−2 noise attenuation at high
frequency.

The marionette in the Type-A suspension and the intermediate mass stage in the Type-
B and Type-Bp suspensions serve a similar purpose, that is, to provide large range steering
to the optics that is suspended below. Therefore, here, only the intermediate mass stage is
described. As shown in Fig. 4.7, the intermediate mass is surrounded by an intermediate
recoil mass. There are six OSEMs attached around the intermediate mass, three horizontal
and three vertical (In the case of Type-A suspensions, they are photosensors instead of
OSEMs.). The OSEM stands for Optical sensing and electromagnetic actuator, which
is to be introduced in Sec. 4.3.3. They are similar to the LVDTs that are used for the
GAS filter and pre-isolator and they provide both sensing and actuation in a compact
form factor [35]. The OSEM body (dark grey as shown in Fig. 4.7) is attached on the
recoil mass and it contains a measurement unit and a voice coil. The measurement unit
measures the displacement of the OSEM flag, which is shown in beige color in the figure,
in the direction of the flag axis. And, the voice coil is also aligned to the flag axis and
it can be manipulated to apply force on a magnet attached to the flag. With the six
horizontal and vertical OSEMs, the intermediate mass can be controlled in all six degrees
of freedom.

4.2.4 Test mass

Like the intermediate mass stage, the test mass stage is composed of a recoil mass and
the test mass, i.e. the suspended optics, which appears to be transparent in Fig. 4.8.
The optics and the recoil mass are each suspended from the intermediate mass via two
loops of suspension wires clamped at the intermediate mass (In the case of the Type-A
suspension, the recoil mass is suspended from the intermediate recoil mass.). As shown
in Fig. 4.8, there are four OSEMs at the back side of the optics. Unlike the OSEMs at
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Figure 4.8: (a): Test mass stage (front). (b): Test mass stage (back).

the intermediate mass stage, the OSEMs at the test mass stage do not provide sensing
of the suspended optics. This is due to the frequent breakage of the OSEM flags as the
motion of the optics became excessive. Instead, the OSEM only provide actuation at four
corners of the optics. The sensing of the optics displacement is done by an optical lever
at the exterior of the vacuum chamber, which is described in Sec. 4.3.5 and 6.2.1. Both
the arrangement of the OSEMs and the optical lever only allows the optics to be sensed
and actuated in the longitudinal direction (parallel to the optical axis of the suspended
optics) and two rotational degrees of freedom, pitch and yaw.

4.3 Sensing and actuation technologies

In this section, the sensors and actuators in the KAGRA vibration isolation systems are
discussed.

4.3.1 Linear variable differential transformer (LVDT)

Figure 4.9: Top filter LVDT assembly at the pre-isolator stage.
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The linear variable differential transferformer (LVDT) is a relative displacement sensor.
It is used in majorly in the tower part of the suspension including the pre-isolator and
the GAS filters. As an example, Fig. 4.9 shows the cross-section view of the top GAS
filter in the pre-isolator. As can be seen, the sensing element of the LVDT is composed
of two separate pieces, the primary coil and the secondary coil. For KAGRA vibration
isolation systems, a coil-magnet actuator is also installed at close proximity of the LVDT
and the two pair an LVDT assembly. In Fig. 4.9, the coil-magnet actuator of the Top
filter is located below the LVDT coils and in this case, the coil is attached to the moving
keystone while the magnetic yoke is attached to the pre-isolator table (underneath).

The quantity that the LVDT is measuring is the relative displacement between the
primary coil and the secondary coil in the direction parallel the coil axis2. When the
primary coil and the secondary coils are mounted at different objects, e.g. the ground
and the pre-isolator table, moving relative to each other, the LVDT then sense the relative
displacement between the two objects. While the primary coil and the secondary coils
are aligned coaxially, they do not need to be in contact. This means the sensing surfaces
can move freely and the sensing do no alter the dynamics of the sensed objects. For this
reason, the LVDT becomes a perfect candidate for active vibration isolation systems that
need to behave like oscillators, i.e. pendulums and spring-mass systems.

Figure 4.10: Conceptual readout circult of the LVDT.

The working principle of the LVDT is as follows. As shown in Fig. 4.10, the primary
coil is being injected with an excitation signal Ve(t). The excitation is sinusoidal such
that

Ve(t) = V0 sin (ωt) , (4.1)

where V0 is the amplitude, ω is the frequency, and t is time. The induced voltages in the
secondary coils are V1 sin (ωt) and V2 sin(ωt), where V1 and V2 are the amplitudes of the
voltage induced in the first and second secondary coils, respectively. Their difference is
being amplified to give a differential signal

Vd(t) = A (V2 − V1) sin (ωt) , (4.2)

2Typical LVDT contains a moving ferromagnetic core and the LVDT measures the displacement of the
core. The coils are immobile. However, KAGRA LVDTs do not contain the ferromagnetic core possibly
because of the presences of the coil-magnet actuator in proximity.
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where A is the amplification of the amplifier. The differential signal and the excitation
signal are mixed, i.e. multiplied, to give a signal

Vd(t)Ve(t) = AV0(V2 − V1) sin2 (ωt) . (4.3)

In practice, the relative phase between the differential signal and the excitation signal is
non-zero and there exists and phase shifting circuitry that needs to be tuned to maximize
the readout. For simplicity, let us assume that the relative phase is zero. Then, by the
double angle identity of cosine, the product of the two signals can be rewritten as

Vd(t)Ve(t) = AV0(V2 − V1)
[
1− cos (2ωt)

2

]

=
1

2
AV0(V2 − V1)−

1

2
AV0(V2 − V1) cos (2ωt) ,

(4.4)

which is a superposition of a static term and an oscillatory term with frequency 2ω.
The oscillatory term is then removed by low-passing the product of the two signals with
real low-pass filter circuitry. And, the final readout is the remained static term that
is proportional to the voltage difference in the two coils V2 − V1. Now, the differential
voltage V2 − V1 of the secondary coils depends on the relative position of the primary
coil in the axial direction, which determines the number of primiary coil directly facing
each secondary coil. Therefore, the low-passed differential signal is linearly dependent
on relative axial displacement between the coils. And, when the primiary coil and the
secondary coils are mounted on two objects moving relative to each other, the readout is a
signal proportional to the relative displacement. To obtain the proportionality constant,
the LVDTs were calibrated with calipers in practice and this is possible because of the
large linear range of the LVDTs.

Note that here the induced voltages in the secondary coils V1 and V2 are assumed
to be constants, but in reality, they are not. In practice, the excitation signal is chosen
such that the frequency much higher than that of the suspension displacements that are
sensed. To give perspective, the excitation signal used at KAGRA is a 10 kHz signal
with 5V peak-to-peak. Whereas, the motion of the suspension degrees of freedom can
be assumed to be dominated by resonant motions at below few 10Hz. Therefore, the
difference is large enough for the above analysis to remain valid.

4.3.2 Geophone and inertial sensors

The geophone is a type of sensor that converts velocity of the sensed object to a voltage.
And, the velocity readout is a relative to an inertial frame of reference. For this reason, the
geophone is a type of inertial sensors, which can be used to achieve active seismic isolation
when used in an active control scheme, such as feedback control. The pre-isolators of the
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KAGRA suspensions are all installed with the L-4C geophone and they are meant to be
used for active seismic isolation of the main optics. The geophone is not the only type of
inertial sensors that is used at KAGRA. Seismometer also a type of inertial sensors that
is used in to monitor the ground motion at KAGRA. There are other types of inertial
sensors, such as the monolithic folded pendulum [28, 36], and the development of inertial
sensors to achieve higher sensitivity is still an active area in active isolation research for
gravitational-wave detectors.

The inertial sensors can be mainly divided into two types, one with passive sensing
and the others with active elements. But, they are all based on the same principle, that is,
sensing the relative motion of a suspended proof mass and inferring the inertial motion of
the suspension point. In the case of the passive ones, the relative motion of the suspended
proof mass is measured in the form of relative velocity between suspension point and the
proof mass. Examples of passive inertial sensors are geophones and seismometers. In the
geophones, the relative velocity is measured by a coil and a magnet, which are fixed either
on the proof mass and the enclosure. The inertial motion of the suspension point can
then be inferred from the relative velocity using the inverse dynamics of the suspended
proof mass. The detailed mechanism of the geophone is given in Sec. 6.1.2, where the
inverse dynamics of the geophone is derived. As for the active inertial sensors, the relative
motion between the proof mass and the suspension point is being actively nullified by a
feedback control system. The feedback force, being proportional to the acceleration of
the suspension point, can then be used to infer the inertial acceleration of the suspension
point. The advantage of an active scheme is that it allows the incorporation of a readout
mechanism with lower range but with higher sensitivity, such as an interferometer [36].

4.3.3 Optical sensing and electromagnetic actuator (OSEM)

The OSEM stands for optical sensing and electromagnetic actuator and is compact device
that contains both non-contact sensing and actuation in one small form factor. The
original version of the OSEM is called BOSEM (B for Birmingham) and was developed for
the LIGO detector [37]. Several iterations have been developed as an improvement to the
original BOSEM and the version presented here is the one used in KAGRA [35]. As shown
in Fig. 4.11, the OSEM is used at the intermediate mass stage of the vibration isolation
systems. For Type-A systems, another sensor called photocoupler position sensor, photo-
reflective sensors, or simply photosensors are for the marionette and the intermediate
mass instead and this is to be discussed in Sec. 4.3.4. The OSEM was originally planned
to be used also for the sensing and actuation at the test mass stage. However, the design
of the OSEM requires the sensor flag to be physically inserted into a small extrusion hole,
which makes it vulnerable to large relative motion where the sensor flag is dislocated due
to mechanical interference [35]. This is very undesirable for gravitational-wave detectors
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Figure 4.11: Section view of the OSEM.

where the optics are sealed in complicated vacuum systems and resetting the sensor flag
could potential take time off the commissioning and observation period. Therefore, the
sensing part of the OSEM at the test mass stage is eliminated [32, 35].

The sensing part of the OSEM is essentially a shadow sensor, which is a photodiode
detecting the presences of a shadow (or the absence of light). As shown in Fig. 4.11, the
OSEM body is divided to two sides corresponding to the transmitter and the receiver.
The transmitter consist of an light-emitting diode (LED) and a small collimating lens
(not labeled). The light from the LED travels through a small slit and reach the receiver
side, which contains a photodiode. As the sensor flag is inserted between the transmitter
and the received, it partially blocks the light. This is reflected in the reduced voltage
readout of the photodiode. And, since the amount of reduced readout a function of the
amount of clipped light, which depends on the position of the sensor flag, the displacement
sensing can be achieved. The calibration relationship between photodiode readout and
the displacement of the flag is sigmoidal, which roughly approximated by an error function
assuming a Gaussian light profile, as discussed later in Sec. 6.1.1. The linear region of the
calibration function is around 1mm [35] and this defines the linear range of the OSEM
sensor. As for the actuation part, the sensor flag is, in fact, magnetically attached to a
larger magnet as shown in Fig. 4.11. A coil is wrapped around coil bobbin of the OSEM
body and actuation signals can be injected into the coil so a force can be applied to the
magnet where the sensor flag is attached.

4.3.4 Photocoupler position sensor (photosensor)

The photosensor is a novel sensor specially developed for KAGRA and is used to replace
the OSEMs for the sensing of the marionette and intermediate mass stages of the Type-
A system. The reason why the photosensor is used instead of the OSEM is due to
the cryogenic nature of the payload of the Type-A suspension. The drastic change in
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temperature and the slight difference in thermal expansion of the suspension wire causes
the suspension to drift during cool down [38]. And, this calls for an increase of the 1mm

linear sensing range of the OSEM. To resolve the issue, the photosensor is developed and
it has a linear range of 10mm.

Figure 4.12: Conceptual diagram of a photosensor.

Fig. 4.12 shows a conceptual diagram of a photosensor. In the figure, the photosensor
measures the relative displacement between a reflective surface and the LED. In the case of
KAGRA suspensions, the stainless steel surfaces of the marionette and the intermediate
mass are polished to increase the reflectivity for this purpose. Unlike the OSEM, the
photosensor has one transmitter but two receivers, i.e. one LED and two photodiodes.
As the reflective moves towards the LED and the photodiodes, the reflected beam shifts
(much like the length sensing optical lever in Sec. 6.2.1) and this changes the amount of
light that enters the photodiodes. Also, when the reflective surface tilts (along the axis
out of the screen), the amount of light that enters each photodiode also changes. But,
the change in the two readouts are differential in this case, one increase and the other
decreases. Therefore, the common mode of the readouts can be used as a displacement
readout. However, for a two-sensor configuration, the readout cannot be decoupled from a
tilt along photodiode-LED-photodiode line (vertical in Fig. 4.12). The ideal configuration
is to have two such units of photodiode-LED-photodiode placed such that the photodiodes
form four corners of a square. In this way, the common mode of the four photodiode
readouts give a displacement readout that is decoupled from all tilt of the reflective
surface.

4.3.5 Optical lever

The optical lever is given its name because part of the test mass displacement sensing
device is composed of an optical lever. Technically, an optical lever is an optical device
that senses the tilt of a reflective surface by measuring the shift a reflected beam spot.
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The distance from the reflected surface to the reflected beam spot forms a lever arm
that amplifies the tilt motion of the reflected surface and hence is given the name. The
tilt sensing of the test mass stage of the KAGRA suspensions rely on the optical lever
mechanism and is therefore the test mass sensor is referred as the optical lever. However,
the same optical lever beam can be used to measure a shift in the reflective surface besides
a tilt. This is achieved by measuring the reflected beam spot at some position behind
a convex lens. The details of the test mass sensing is given in Sec. 6.2.1, where the
relationship between the optical lever readout and the displacements of the suspended
optics is derived. This section serves as a brief introduction.

Figure 4.13: Cross-section view of a Type-B suspension.

The optical lever consists of a transmitter and a receiver. They are optical components
that are located at the exterior of the vacuum chamber containing the vibration isolation
systems. Fig. 4.13 shows the cross-section view of a Type-B suspension. As can be seen,
the optical lever beam enters the vacuum chamber via a lower viewport. In this case,
the light source is a superluminescent diode mounted on a optical breadboard next to
the lower viewport (not shown in the figure). The optical lever beam then is reflected
off the suspended optics and exits the vacuum chamber via the upper viewport. The
beam is then steered and made horizontal along an optical breadboard, by a steering
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mirror, containing the readout optics. It is worth noting that this configuration, where
the incidence plane is parallel to a vertical plane, is exclusive to the Type-B systems. For
the Type-A and Type-Bp suspensions, optical lever beam travels along a horizontal plane
instead.

Figure 4.14: Conceptual readout optics of the optical lever. Diagram created using com-
ponent template provided by Ref. [39].

A conceptual diagram of the optical lever readout optics is shown in Fig. 4.14. As
shown in the figure, the beam reflected from the suspended optics is divided into two
paths via a beamsplitter. One of the beam hits the tilt-sensing quadrant photodiode
(QPD), forming the traditional optical lever. The other beam travels through a convex
lens and then eventually reaches the length-sensing QPD. The QPDs measure the shift
of the beam spots caused by a tilt or a shift of the suspended optics. With a proper
placement of the length-sensing QPD behind the lens, the length-sensing QPD becomes
only sensitive to the longitudinal shift of the suspended optics but not a tilt in pitch or
yaw.

There are four photodiode readouts in a QPD, each measuring the light power of beam
that enters the corresponding quadrant. Suppose the voltage readout of the quadrants A,
B, C, and D (following the convention in Fig. 4.14) are VA, VB, VC, and VD, respectively,
a horizontal shift of the beam spot can be written as a proportionality

x ∝ VB + VD − VA − VC
VA + VB + VC + VD

, (4.5)

where x is the beam spot displacement in the horizontal direction. Similarly, the vertical
beam spot displacement can be written as

y ∝ VA + VB − VC − VD
VA + VB + VC + VD

, (4.6)

where y is the vertical beam spot displacement. From here, the beam spot displace-
ments can be calibrated in physical units by moving the QPDs in horizontal and vertical
directions relative to a static beam using a micrometer stage. With the beam spot dis-
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placements obtained, the longitudinal, pitch, and yaw displacements can be derived using
ray transfer matrix analysis [40] and the detailed analysis of the optical lever is given in
Sec. 6.2.1, where the geometric sensing matrix of the optical lever is derived..
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Chapter 5

Control Topology

In this chapter, the control architecture of the vibration isolation system used in KAGRA
is described in detail. This chapter gives background information about the active isola-
tion systems at KAGRA. The purpose is to establish stage in which later the research is
built upon.

Active control is done via converting some sensing readouts into some actuation signals,
achieving feedback or feedforward control. In general, this transformation can be arbitrary
and even non-linear. However, control systems without a defined architecture can be
hard to realize and design without involving advanced control techniques. A control
architecture defines how signals are wired, how signals flow and transform, and how
sensed signals are eventually converted into actuation signals.

KAGRA inherited the LIGO real-time code generator (RCG) [41], which is developed
by the LIGO Control and Data Systems group (CDS). RCG uses MathWorks Simulink [42]
as a drawing tool to design the control architecture as a Simulink model. The Simulink
model is then complied into software to be run on front end control computers to real-
ize real-time control. Simulink provides many components (parts) that can be used as
building blocks to construct a control architecture. But, not all Simulink parts are sup-
ported by RCG. Instead, RCG has a library called CDS parts that contain essential parts
required to assemble and realize a control architecture. There are many parts related to
real-time implementation, but not related to control system design, such as parts that
interface actual hardware like an analog-to-digital converter (ADC). The critical building
blocks related to control architecture design are matrix and filter. There are also summing
junction and gain blocks. But, they are simply special cases of matrices and filters and
they are not required for explaining the control architecture used at KAGRA.

Fig. 5.1 shows a simplified example control architecture for one stage of the suspension
that has three sensors, three control basis, and three actuators. Note that the number of
sensors, control basis, and actuators are generally not the same. This is a general layout
for suspension stages with multiple degrees of freedom (DoFs) and it shows how sensing
signals are passed through various components to become actuator signals that are used to
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Figure 5.1: Example control architecture with three sensors, three control degrees of
freedom, and three actuators.

command the actuators. In the figure, each arrow represents a process variable. Filters are
linear-time-invariant (LTI) filters that can be represented by transfer functions, which can
be quantified by frequency-dependent amplitude and phase responses. And, matrices are
linear transformations in the usual mathematical sense. Filters and elements in matrices
can be accessed and modified in real-time whereas the inter-connections between them
are defined within the architecture. Most of the filters and matrices require some initial
configuration, design, or tuning. The intended purpose of these components are described
in following paragraphs.

There are three levels in the control architecture, as enclosed by red, green, and blue
brackets in Fig. 5.1. They correspond to three different signal bases (coordinate systems):

1. Sensor basis,

2. Control basis, and

3. Actuator basis.

Generally speaking, while they span the same physical space, these coordinate systems
are not necessarily aligned. The sensor basis is defined by the directions in which the
sensors physically measure. The control basis is a user defined coordinate system that is
used for control. Unless otherwise specified, the control basis is chosen to be the three
translation directions and the rotational directions along the axes of these directions.
Detail description of the control basis is given in Sec. 5.1. Lastly, like sensor basis,
actuator basis is defined by the directions where the actuators physically apply force.

Sensor signals from the left of Fig. 5.1 are raw sensor readouts sourced from the analog-
to-digital converters. The raw readouts have arbitrary scale and must be converted into
proper physical units such as micrometer µm. The sensors are typically calibrated to
obtain a calibration factor that converts the raw sensor readouts to proper displacement
units. For inertial sensors, such as geophones and accelerometers, they need frequency-
dependent calibration filters, which correspond to the inverse frequency responses of the
sensors. This is done via input filters as shown area enclosed by the red bracket in Fig. 5.1.
The aforementioned calibration factors are also usually implemented in the input filters.
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Details of sensor calibration are given in Sec. 6.1. Besides calibration, the input filters are
typically be used for other signal processing purposes such as whitening/dewhitening.

The input filters give raw displacement readouts that correspond to displacements that
the sensors are directly measuring. They are often not measuring in the directions that
align with the control basis and the raw displacements contain a linear combination of
the desired control displacements. Therefore, the input signals need to be transformed to
displacement signals that aligns with the control coordinate system. This is achieved via a
sensing matrix as shown in Fig. 5.1. Then sensing matrix can be initially derived from the
physical locations of the sensors using geometry. This type of sensing matrix is referred
to the geometric sensing matrix. The derivation is often straightforward as the geometric
locations of the sensors can be obtained from the computer aided design (CAD) file of
the hardware. Refs. [43, 44] provide detail derivation of the geometric sensing matrices
for the beamsplitter (BS) suspension and the signal-recycling (SR) mirror suspensions,
except for the sensors (optical levers) at the optics (test mass) stage. The derivation
of the optical lever sensing matrices is given in Sec. 6.2.1 as an example. Although the
geometric sensing matrix provides an initial sensing matrix that theoretically aligns the
sensors to the control basis, cross-coupling ratios between different displacement readouts
at the 10−2− 10−1 level are often observable, especially at the test mass stage. Therefore,
they can be further tuned to finely align the sensor basis to the desired control basis. This
fine alignment process is called “diagonalization” and is detailed in Sec. 6.2.1. Again, the
sensing matrix is not necessarily a square matrix.

The output of the sensing matrix gives the calibrated displacements in the desired
control basis. The signal here is often called the “error signal”, which is passed directly
into the control filter. Often, there is a summing junction in between the sensing matrix
and the control filters. The summing junction takes a reference “setpoint”, which is the
desired static position of the corresponding DoF, and outputs the difference between the
setpoint and the displacement. This enables position control of the suspension. But, for
simplicity, it is omitted here since it is simply an offset to the measured displacement.

The control filters in Fig. 5.1 are feedback control filters. They are frequency-dependent
filters and they ultimately determine the control bandwidth and performance of the con-
trol system. The filters convert the displacement signals into actuation signals in the
control coordinate system. The design of these filters are rather involved. In this thesis,
two methods are proposed for designing these filters:

1. PID-based controller with critical design criteria (Sec. 6.4), and

2. H∞ optimization (Sec. 8.2.3).

Both methods work with minimal design freedom and the result control filters are optimal
in two different manners.
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The control filters output actuation commands in the control basis and they need to
be transformed into the actuation basis. This is achieved via an actuation matrix as
shown in Fig. 5.1. The idea behind an actuation matrix is similar to that of a sensing
matrix but works in an opposite way. Another difference between a sensing matrix and an
actuation matrix is that the actuation matrix preserve no information about calibration
in any sense. This is because the actuators are not calibrated and this is generally not
necessary. Therefore, the actuation matrix does not only convert the actuation signals
from the control coordinate system to the actuation coordinate system, but there is also
a freedom to scale the signals by an arbitrary amount. Again, the actuation matrix can
be straightforwardly derived from the positions of the actuators and matrices for the BS
and SR suspensions are given in Refs. [43, 44]. An example is also given in Sec. 6.2.2.
Like sensing matrices, the geometric actuation matrix is often not sufficient and require
fine adjustment (diagonalization). Sec. 6.2.2 gives detailed explanation on this topic.

At last, the output filters may be used as whitening filters depending on the hardware
configuration. The output filters are sometimes used as “balancing gains”, which equalizes
the strength of each individual actuators. The effect of balancing is degenerating with
actuation matrix diagonalization, which is an attempt to align the actuators to the control
basis. The output filters send signals to the digital-to-analog converter (DAC) in the
Simulink model and the front end computer passes these signals to the actual DAC,
which eventually converts the digital signals to voltage to be applied on the actuators.
This completes a signal flow on the software side. The actuators actuate the suspension
and the motion is sensed by the sensors and this completes a feedback loop.

It is worth mentioning that Fig. 5.1 is a simplified stage-wise picture of the control
architecture of the real control system. In reality, there are more components, such as the
aforementioned setpoints, and they will be introduced appropriately in relevant sections.

Fig. 5.1 not only shows how control signal flows within the real-time model, but also
defined some tasks that are required to partially complete the control system. The tasks
are mentioned in previous paragraphs and here is a brief reiteration:

1. Calibration,

2. Aligning the sensors to the control basis (sensor diagonalization),

3. Designing feedback control filters to fulfill control objectives, and

4. Aligning the actuators to the control basis (actuation diaognalization).

These tasks are referred to part of the suspension commissioning tasks. Sections in Chap. 6
provides well tested methods for tackling these tasks and the results are shown.
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5.1 Control basis

This section describes how the control coordinate system is defined.

Figure 5.2: Local coordinate system of a suspended optics.

Fig. 5.2 shows a simplified diagram of a suspended optics with all six directions labeled.
The red line denotes the optical axis of the main interferometer. The optical axis defines
first translational degree of freedom of the suspended optics. This direction is referred
as the longitudinal direction. The vertical direction is defined as the direction opposite
the gravity, i.e. upward. Then, the transverse direction is defined such that the vertical
direction is a cross-product between longitudinal and transverse direction. As for the
rotational degrees of freedom, roll, pitch, and yaw, they are simply defined as the rotation
along the longitudinal, transverse, and vertical axis, respectively.

Being a multiple pendulum, each stage of the suspension has their own locally defined
degrees of freedom that aligns with the coordinate system of the optics. In principle,
almost all stages are free to move in all six degrees of freedom but not all degrees of freedom
are important and not all are controllable. To exemplify, Fig. 5.3 shows a simplified
diagram of a type-B suspension. Firstly, the inverted pendulum (IP) suspends a table
(shown in red) from the ground. The inverted pendulum legs constrain the table to
move on an horizontal plane so the table can only move in longitudinal, transverse, and
yaw direction. All three degrees of freedom are measured relative to the ground. For
geometric anti-springs (GAS), they only have vertical degree of freedom and it is defined
as the relative motion between the keystone (shown in green, blue, and yellow), which
hangs the rest of the suspensions, and the suspension point, i.e. the body of the GAS
filter enclosure (the trapezoids in Fig. 5.3). For type-A and type-Bp suspensions, there
are sensors and actuators around the entirety of the bottom filter (BF) so all six freedoms
can be controlled. But, for type-B suspensions, the motion of the bottom filter is not
sensed so only the keystone (shown in yellow) is controlled. For the marionette (MN)
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and intermediate mass (MN, shown in purple), they can be controlled in all six degrees
of freedom and all displacements are sensed relative to the recoil masses. Lastly, the
test mass (TM, shown in cyan), i.e. the suspended optics, can move in all six degrees
of freedom but only longitudinal, pitch, and yaw are controllable, with displacement
measured relative to the ground. This gives a total of 15 controllable degrees of freedom
for a type-B suspension (3 inverted pendulum, 3 GAS filters, 6 intermediate mass, and 3
test mass degrees of freedom). For type-A suspensions, there are 29 controllable degrees of
freedom (3 inverted pendulum, 5 GAS filters, 6 bottom filter, 6 marionette, 6 intermediate
mass, and 3 test mass degrees of freedom). And for type-Bp suspensions, there are
17 controllable degrees of freedom (2 GAS filters, 6 bottom filter, 6 intermediate mass,
and 3 test mass degrees of freedom). Note that the controllable degrees of freedom are
not necessarily independent. For example, moving the inverted pendulum table in the
longitudinal direction would move the whole chain below it, including the test mass, in
the same direction. Also, in Fig. 5.3, the vertical degree of freedom of the intermediate
mass happens to be exactly the the bottom filter GAS DoF.

The desired control basis doesn’t not need to be exactly the controllable degrees of
freedom. The use of a stage-wise Cartesian basis and Euler angles is chosen for simplic-
ity. It aligns with the interferometer arms and this simplifies tasks such as alignment
and sensor correction (Sec. 7.2). In principle, the controllable degrees of freedom can be
transformed into other unusual basis for control. One example would be the eigenvectors
of the suspension. In such basis, all degrees of freedom will be decoupled with each other
and each degree of freedom behave like a simple spring-mass, which may simplify the
controller design [30]. However, it is obvious the decomposition is not possible for all
modes of the suspension as many degrees of freedom are not sensed. Using the eigenbasis
decouples the dynamics of the system but couples other things such as sensor noises and
disturbances as it couples many controllable degrees of freedom. This can complicate opti-
mal controller designs where the disturbances and noises are considered. Also, controllers
in the eigenbasis can be mapped into other basis. Therefore, using the eigenbasis has no
significant advantages over the Cartesian and Euler bases as long as the controllers are
optimized to achieve certain objectives. Hence, unless otherwise specified, the stage-wise
Cartesian basis and Euler angles (e.g. IP longitudinal, IM transverse, TM pitch, etc.) will
be used for further discussions in this thesis But, it is worth to mention that the methods
to be discussed are not limited to a certain control basis.

5.2 Control problem formulation

Assuming that the sensing matrices and actuation matrices properly aligns the sensors
and actuators to the desired control basis, each control degree of freedom becomes an
individual system with one sensor and one actuator. Each individual system has one
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Figure 5.3: A simplified diagram of a type-B suspension (Not to scale). All sensed objects
are colored and labeled: Inverted pendulum table (red), GAS filter 0 keystone (green),
GAS filter 1 keystone (blue), bottom GAS filter keystone (yellow), intermediate mass
(purple), and test mass (cyan).

controller which can be designed independently. To illustrate this, consider a pendulum
system as shown in Fig. 5.4. In Fig. 5.4, a pendulum is hanged from a platform and
the control degree of freedom is the horizontal position of the pendulum, assuming small
angles. The platform is not fixed in space and can be perturbed by random disturbances.
As a result, the disturbance propagates and the pendulum starts to move. This is a
general description a free-swing condition of any stages in a suspension. The pendulum
analogize the stage while the platform analogize the stage above it. Some examples would
be the inverted pendulum table (the pendulum) and the ground (the platform), or the
test mass (the pendulum) and the intermediate mass (the platform).

The horizontal displacement of the pendulum is measured by a sensor as shown in
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Figure 5.4: An actively controlled pendulum.

Fig. 5.4. The sensor signal is taken by a controller, which outputs an actuation signal.
The actuation signal drives an actuator, which applies force on the pendulum. Under this
configuration, the idea is to design a controller K(s) such that it commands the actuator
to apply a force in the opposite direction of the disturbed motion and hopefully attenuates
and cancels it. This holds the pendulum at a desired position, effectively rejecting the
disturbances coming from the motion of the platform. And, this is conceptually what
needs to be achieved with active isolation1.

To formally describe the problem, consider a control block diagram shown in Fig. 5.5.
Fig. 5.5 shows a general control system with three exogenous inputs R(s), D(s), N(s)

and one output X(s). They represent the reference (setpoint), disturbance, noise, and
displacement, respectively. Here, s is the complex variables and all quantities are described
in the Laplace domain. They blocks labeled K(s) and P (s) denotes the control filter and
the plant. And, the variable U(s) represents an actuation command.

In the block diagram, the system has a disturbance D(s) that causes the displacement
X(s) to be non-zero. The displacement X(s) is sensed by a noisy sensor with sensing noise
N(s), which gives a sensor readoutX(s)+N(s). The sensor readout is negatively feedback
and the reference R(s) is subtracted from it to give an error signal R(s)−X(s)−N(s).
The error signal is then filtered by a controller K(s) that outputs an actuation command
U(s) = K(s)[R(s)−X(s)−N(s)] that goes into the plant P (s). The output of the plant

1Some would use the word damping or simply control.
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Figure 5.5: Control block diagram of one degree of freedom

P (s)U(s) summed with the disturbance D(s) gives back the displacement X(s). This
gives the signature equation of the displacement:

X(s) =
K(s)P (s)

1 +K(s)P (s)
R(s) +

1

1 +K(s)P (s)
D(s)− K(s)P (s)

1 +K(s)P (s)
N(s) (5.1)

The variables names state the nature of the variables but it is worth properly defining
them and give further elaboration to avoid confusion and ambiguity. The reference R(s)
is the setpoint of system. It represents the desired value of the displacement X(s). For
local suspension control, this is usually a value that is determined by the coarse alignment
of the interferometer. But, it is not necessarily a predetermined value and it can even be
interconnected to other systems. For example, the yaw reference of the inverted pendulum
can be interconnected to the yaw readout at the test mass stage. With position control
engaged, this effectively offloads the actuation signals from the payload to the inverted
pendulum stage. Another example would be the yaw reference of the test mass being
interconnected to the interferometer alignment-sensing yaw signal.

The disturbance D(s) is defined as the displacement X(s) when the controller is
K(s) = 0 (or equivalently, U(s) = 0), i.e. the free-swing displacement. For exam-
ple, the disturbance at the inverted pendulum stage DIP (s) is the pendulum attenuated
ground motion, DIP(s) = PXg→XIP

(s)Xg(s), where PXg→XIP
(s) is the transfer function

from ground displacement Xg(s) to the displacement of the inverted pendulum table. On
the other hand, the noise N(s) is also defined as the “sensing noise”, which is slightly
different from the “sensor noise”. Sensing noise is defined as any unwanted signal that is
present in the sensor readout, i.e. signal that is not X(s), whereas sensor noise refers to
the intrinsic sensor noise. Sensing noise and sensor noise can be the same but are gener-
ally not the same. Take the sensing of the inverted pendulum table as an example. The
longitudinal sensor at the inverted pendulum stages measures the relative displacement
the inverted pendulum table and the ground. So the readout is XIP(s)−Xg(s)+Nsensor(s),
where XIP(s) is the displacement, Xg(s) is the ground displacement, and Nsensor(s) is the

Optimizing Active Isolation Systems in Gravitational-Wave Detectors 73



CHAPTER 5. CONTROL TOPOLOGY

sensor noise. In this case, the sensing noise is N(s) = −Xg(s) + Nsensor(s) ̸= Nsensor(s).
Alternatively, the noise N(s) is defined as the negative displacement −X(s) as the con-
troller K(s)→∞, i.e. when the control gain is high, assuming that R(s) is a static value
at DC and N(s) is a stochastic process with zero mean. This can be easily seen from
Eqn. (5.1).

The plant P (s) is also known as the actuation path, or the transfer function from
the actuation signal U(s) to the displacement X(s). It refers to the ratio between the
displacement and the displacement and the actuation signal. This plant is physical and
represents the dynamics of the system. The transfer function of the plant can be derived
from the equation of motion. But for a multiple pendulum suspension, most of the time,
the frequency response of the plant is measured by, again, taking the ratio between the
sensor readout and the actuation signal, which are both measurable. In this case, the
actuation signal has to be large enough to the actuated displacement is much greater
than the disturbance, and is also might greater than the sensing noise. The transfer
function of the plant is then modeled from the measured frequency response.

The controller K(s) is sometimes called a regulator, or simply the control gain. It can
be represented by a generic transfer function in polynomial form,

K(s) =
b0 + b1s+ b2s

2 . . .

a0 + a1s+ a2s2 . . .
, (5.2)

where a0, a1, a2, b0, b1, b2, . . . are scalar coefficients. Another common expression of con-
troller would be the zero-pole-gain model (ZPK model),

K(s) =
(s− z1)(s− z2)(s− z3) . . .
(s− p1)(s− p2)(s− p3) . . .

, (5.3)

where z1, z2, z3 are the zeros and p1, p2, p3 are the poles of the controller transfer function.
The ZPK expression is often preferred for manual shaping of the controller since the corner
frequencies are directly determined by the zeros and poles. The feedback controller is a
design freedom of the control system as can take almost any arbitrary number of design
parameters, i.e. it can have any arbitrary number of zeros and poles so long as the system
is stable.

The reference term is assumed to be a constant at DC and it simply acts as a static
offset to the displacement whereas the disturbance D(s) and noise N(s) correspond to two
frequency-dependent stochastic processes. Both the disturbance and the noise contribute
to the residual motion of the system and they need to be attenuated. To formulate the
control design problem, consider a simplified version of Eqn. (5.1) with the reference term
stripped,

X(s) =
1

1 +K(s)P (s)
D(s)− K(s)P (s)

1 +K(s)P (s)
N(s) . (5.4)
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Eqn. (5.4) shows that the displacement X(s) is a linear combination of a disturbance term
1/[1+K(s)P (s)]D(s) (filtered disturbance) and a noise termK(s)P (s)/[1+K(s)P (s)]N(s)

(filtered noise). Assuming that the disturbance and noise two uncorrelated, the power
spectral density (PSD) of is displacement is simply the sum of the PSD of the distur-
bance term and the PSD of the noise term. Therefore, the amplitude spectral density
(ASD) of the displacement is a quadrature sum of the term filtered terms and it reads

X̂(f) =

[∣∣∣∣
1

1 +K(s)P (s)

∣∣∣∣
2

D̂(f)2 +

∣∣∣∣
K(s)P (s)

1 +K(s)P (s)

∣∣∣∣
2

N̂(f)2

] 1
2

, (5.5)

where f is the frequency (Hz), s = jω = j2πf , j is the imaginary number, X̂(f) is the
ASD of the displacement, D̂(f) is the ASD of the disturbance, and N̂(f) is the ASD of
the noise.

The displacement X̂(f) is the quantity that needs to be minimized (in some sense).
From Eqn. 5.4, it is clear that when K(s)P (s) is large, the disturbance term becomes zero
as 1/[1 +K(s)P (s)] → 0. This is the idea of active isolation. However, when K(s)P (s)

is large, the coupling term of the noise N̂(f) becomes K(s)P (s)/[1 + K(s)P (s)] → 1,
which fully couples the the noise to the displacement. The two coupling terms2 are
complementary, i.e.

1

1 +K(s)P (s)
+

K(s)P (s)

1 +K(s)P (s)
= 1 . (5.6)

Therefore, this necessarily means that the disturbance term and the noise term cannot
be minimized simultaneously. The problem here is clear. Qualitatively, that is, to design
a controller K(s) such that K(s)P (s) is large when D̂(f) > N̂(f), and is small when
N̂(f) > D̂(f). And, it has to be done in a way that the system is stable, i.e. 1+K(s)P (s)

has no zero on the right-half the complex plane In such a way, the displacement X̂(f),
under the influence of a feedback control system, will be dominated by min {D̂(f), N̂(f)},
which is the minimum amount of displacement level.

The minimum between the disturbance D̂(f) and noise N̂(f) denote the lower bound
of the displacement X̂(f). While the actual control performance is realized by the design
of the controller K(s), D̂(f) and N̂(f) determines the potential of the control perfor-
mance. Therefore, to maximize the possibility of minimizing X̂(f), it is important that
the disturbance and noise are minimized as well. The source of disturbance in a sus-
pension system ultimately comes from motion of the ground, which is hard to attenuate.
But, recall the pendulum and platform analogy in Fig. 5.4, for stages hanging from the
pre-isolator, the source of disturbance can be treated as the displacement of the upper

2The term 1/[1 + K(s)P (s)] is called the “sensitivity” and K(s)P (s)/[1 + K(s)P (s)] is called the
“complementary sensitivity” in control theory. One famous phenomenon related to the sensitivity function
is the waterbed effect, which states that suppression at some frequencies is necessarily coupled with
amplification at other frequencies. This also poses an interesting challenge in controller design, where the
amplification needs to be placed at frequencies that is not important.
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stage, which is minimized by solving control problem that is being discussed. This means
that the control of an upper stage is important as the residual motion gets propagated
to lower stages. This also determines the priority of control problems: Control is more
important at upper stages and they need to be solved first.

As for the sensing noise, for most control systems, its source is ultimately the intrinsic
noise of the sensor used to measure the displacement. The intrinsic noise is determined by
the hardware and the technology being used to achieve sensing. The noise performance of
a sensor can only be improved by advancement in sensing technology and this is currently
an active research area. Once the hardware is determined, there is no in situ treatment for
reducing the intrinsic sensor noise. However, in some cases, the sensing noise is possible
to be minimized. In particular, there are two control schemes at the inverted pendulum
stage that can be used to reduce sensing noise: 1) Sensor fusion using complementary
filters, and 2) sensor correction. Details of the two approaches are given in Sec. 7.1 and
Sec. 7.2. Both control methods assumes that the sensors measure the same quantity and
they are inter-calibrated. The method of inter-calibration is given in Sec. 6.1.3.

Nevertheless, there are several regression tasks that need to be done before the con-
troller can be designed. As discussed earlier, the control performance is not solely de-
termined by the controller K(s), but rather, the product of the controller and the plant
K(s)P (s), i.e. the open loop transfer function (OLTF). Therefore, in order to analyze
control performance before deployment of the controller, the plant P (s) needs to be mod-
eled and this is covered in Sec. 6.3.1. If the control performance were to be analyzed or
to be used during the controller design, the ASD of the disturbance D̂(f) and noise N̂(f)

also need to be modeled. Details of spectrum modeling is given in Sec. 6.3.2. At last,
Sec. 6.4 discusses a baseline method to design the controller K(s) for critical damping
and alignment. The whole Chap. 6 is dedicated to discuss methods that have been used
during the commissioning of the suspensions at KAGRA. Advanced methods using H∞

synthesis is discussed in part. III.
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Chapter 6

Suspension Commissioning Techniques

This chapter presents an essential set of techniques that are used to prepare the local
control systems for the active isolation systems at KAGRA. Throughout the chapter,
complementary examples (real or simulated) are given wherever possible.

The methods discussed in this chapter are developed particularly to tackle tasks as
discussed in Chap. 5. However, they are not the only way to tackle these takes and they
may not be the best way. But, they are well defined, simple, easy-to-use, and robust.
Most importantly, these methods have already been tested extensively and used during
the commissioning phase of O4. Therefore, they serve as fallback methods for suspension
commissioning and can be considered the baseline for further developments.

6.1 Sensor calibration

In this section, the calibration of displacement sensors and inertial sensors is covered.
The goal of sensor calibration is to obtain a calibration factor or filter that converts the
raw sensor readout, which is a voltage converted to a digital value via the analog-to-
digital converter (ADC), to a value in displacement unit such as micrometer µm. The
calibration factor/filter is implemented in the input filters at the very first stage of the
signal processing flow as discussed in Sec. 5.

In general, there are two types of calibration functions, frequency-dependent and
frequency-independent. Displacement sensors, such as linear variable differential trans-
formers (LVDT) and OSEMs, are typically frequency-independent, meaning that they
map the measured displacement to a voltage. However, the mapping is not a linear re-
lationship. The displacement-voltage curve of a sensor usually follows a sigmoidal trend,
i.e. an “S” shape. The relationship is only approximately linear around the center of the
curve, i.e. the operating point. For this type of calibration, the common treatment is to
approximate a linear relationship around the center and the sensor is said to have a linear
range. Sec. 6.1.1 gives two methods to achieve this kind of calibration.

On the other hand, inertial sesnors, such as geophones and accelerometer, are typically
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frequency-dependent since the readout is typically the velocity of a suspended proof mass.
The proof mass is suspended from a structure attached to the object that the sensor is
sensing. So, the inertial sensors measure inertial motion of an object indirection and
a filter is needed to compensate for the dynamics of the suspended proof mass. The
calibration filter is like any control filter and it has frequency response correspond to the
inverse dynamics of the sensor. Sec. 6.1.2 provides a derivation of the geophone calibration
filter and gives an example on calibrating such sensors.

It is worth mentioning that the control performance of an active isolation system is not
depended on the quality of sensor calibration. Therefore, sensor calibration needs not to
be perfect, except for frequency-dependent calibration, which could introduce unwanted
frequency response (phase distortion or amplification) to the plant. However, there are
several benefits of having calibrated sensors. First of all, calibrated sensors provide a good
reference of the control performances, such as the residual motion in terms of ASD or
root-mean-square value (RMS). This enables comparison between different active isolated
systems. Having sensors calibrated also means that the sensing noise levels are calibrated.
This can aid controller design where noise level is considered.

6.1.1 Sigmoidal calibration curve

All displacement sensors, except inertial sensors, in KAGRA active isolation systems have
a sigmoidal calibration curve, including LVDTs, OSEMs, photosensors, and optical levers.
While their calibration curves follow a general sigmoidal curve, there are subtle differences
between different types of sensors. And hence, there are more than one way to calibrate
them. As for which method is the best, there is no consent in KAGRA. However, all
methods will be discussed along with their pros and cons.

The calibration problem can be generalized into an optimization problem:

min
θ

(
1

N

N∑

n=1

[f(xn; θ)− yn]2
)
, (6.1)

where f(xn; θ) is a model of the calibration curve, xn is the measured independent variable,
i.e. displacement, yn is the dependent variable, i.e. the sensor readout, θ is the parameter
vector being optimized, and N is the number of measurements. Eqn. (6.1) represents a
simple least square regression problem, which is straightforward to solve. Unless otherwise
specified, the problems in this section are solved using the Scipy optimization function
scipy.optimize.minimize() with default options and θ = 0⃗ as an initial guess. It is
worth noting that the cost function needs not to be a 2-norm of the difference between
the calibration function f(x) and the measurements yn. The 2-norm is a popular choice
for regression but is susceptible to biased due to outliers. It case of outliers, 1-norm, i.e.
absolute value, can be used to replace the 2-norm in Eqn. (6.1) for fitting.
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Here, two simple models have been used as f(x; θ) for calibrating displacements sensors
at KAGRA. They are

1. Linear function, and

2. Error function.

The choice of these functions is physics informed. Linear function is the candidate for
LVDTs since the electronic readout of an LVDT is proportional to the displacement being
measured. The error function models calibration curves of sensors with optical readout,
especially those with a Gaussian beam. Hence, the error function works well with OSEMs,
photosensors, and optical levers.

Linear function

Linear variable differential transformers (LVDTs) are sensors that map displacement lin-
early to output voltage, as is indicated by the name. Therefore, a linear function

f(x;m, c) = mx+ c , (6.2)

where m is the slope and c is the y-intercept, is supposedly a perfect candidate to be
used in Eqn. (6.1) as a calibration function for LVDTs. However, there are some caveats,
which will be pointed out with an example below.

Fig. 6.1 shows a example calibration of one of the LVDTs at the inverted pendulum
stage of the SR3 suspension. The measurements was done on site with the following
procedure. The inverted pendulum was rotated manually in yaw (with hands) at regular
space steps. At each step, all three LVDTs were measured at the same time with three
calipers and the digital readings were taken as well. For each LVDT, the caliper was
used to measure the distance between a metal bracket (moving with the LVDT) and the
security structure (fixed on the ground). The constant rotation intervals are defined such
that the calipers read 1 millimeter intervals so Fig. 6.1 shows the measurement data with
the caliper reading from 4 mm to 20 mm.

The measurement was terminated as soon as non-linearity had clearly been observed.
And, it is clear that the raw readout (blue dots) shown in Fig. 6.1 exhibits non-linear
relationship with measured displacement around the boundary and the data points look
sigmoidal rather than a straight line. This also indicates that the LVDT doesn’t work
linearly for the full 16-bit ADC range, i.e. readout from -32768 to 32767 counts. Therefore,
the LVDT only works within a smaller range (linear range) that is often hard to define.
Not all data points are used to fit the calibration curve. But, as for which data points are
used, this is often not well-defined at KAGRA and they are chosen by experience.

Here, two ways are proposed to mitigate the inconsistency problem arising from man-
ually chosen data points,
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Figure 6.1: SR3 IP H1 LVDT calibration plot. Blue dots: Measurement data. Orange
“×”: Masked data set with readouts between (−16384, 16384). Orange solid line: Cali-
bration curve fit to the half-range readouts. Green “+”: Data set found by Algorithm 1
corresponding to 1% non-linearity. Green dashed line: Calibration curve fit to the 1%
non-linearity data set.

1. Define a operating range and only use data points within the range, and

2. Specify an acceptable non-linearity and use Algorithm 1 to obtain a calibration
curve.

The first approach is simple. Instead of having data points chosen from experience, simply
define a usable range for the sensor and only use data points within the operating range for
fitting a calibration curve. Fig. 6.1 shows an example of this approach. Orange crosses are
data points with readout in between (−16384, 16384), which is the half-range of the 16-bit
ADC. In this case, the range is chosen for demonstration purpose only although the choice
of a half-range is usually sufficient for defining the linear range in practice. The green
solid line in Fig. 6.1 is a least-square fit of the orange data set and it gives a slope of 3852.5
counts/mm. Assuming that the desired displacement unit is µm, the calibration factor
that converts the sensor readout to µm is then 1/3852.5mm/counts × 1000 µm/1mm =

0.2596 µm/counts.
As for the second approach, Algorithm 1 shows the pseudocode corresponding to

the approach. First of all, an acceptable non-linearity needs to be specified first. The
non-linearity in sensors is defined as the readout deviation from the ideal readout as a
percentage of the full scale:

non-linearity =
readout− ideal readout

full scale
, (6.3)
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where the full scale is defined as the difference between the maximum readout and the
minimum readout. In the case of a 16-bit signed ADC readout, the full scale is 32767 −
32768 = 65535 counts. Then, the data point closest to the midrange of the readout is
put into an initial fitting data set along with the two neighboring points. These three
points are at the middle of the calibration curve. They are assumed to be within the
“most linear” part of the calibration curve and therefore they are chosen for an initial
least-square fit. This approach automatically fails if this is not true. Alternatively, users
can specify a starting point where the calibration curve is considered to be the center of
the linear regime. After obtaining a linear function from the three points, the function
is used to evaluate the non-linearity of other data points from the original data set. If
the non-linearity of a data point falls within specification, e.g. within 1% non-linearity,
then the data point is included into the data set for fitting. This process repeats until no
data point is added to the fitting data set. One advantage of this is that the non-linear
range is automatically defined by the data points within the selected data set, which is
defined by specified non-linearity. As for what value should the non-linearity specification
be taken, this remains as an unanswered question and further study is needed to evaluate
the non-linearity effect in control.

Algorithm 1 Find and calibrate data points within non-linearity specification
yn ← {y1, y2, y3, . . . , yN} ▷ The full readout data set (sorted).
xn ← {x1, x2, x3, . . . , xN} ▷ The full displacement data set (sorted).
ymidrange ← ymax+ymin

2
▷ Midrange, i.e. the center point of the readout, e.g. -0.5.

ym ← argmin
yi∈yn

|yi − ymidrange| ▷ The readout data point closest to the midrange.

yfit ← {ym−1, ym, ym+1} ▷ Choose the data around the midrange for initial fitting.
xfit ← {xm−1, xm, xm+1}
yfullrange ← ymax − ymin ▷ Full scale of the readout, e.g. 32767-(-32768) = 65535.

while True do
f(x) = linear_fit(xfit, yfit) ▷ Fit the data and obtain a linear function f(x).
for i in {1, 2, 3, . . . , N} and yi /∈ yfit do ▷ For data that is not in yfit.

non-linearity = yi−f(xi)
yfullrange

if non-linearity < specified non-linearity then
yfit ← yfit ∪ {yi} ▷ Add the data into yfit.
xfit ← xfit ∪ {xi}

end if
end for
if the yfit data set didn’t change then

break ▷ Terminate and return the slope and intercept of f(x).
end if

end while

Using Algorithm 1, the data within 1% non-linearity is found and plotted as green “+”
in Fig. 6.1. The green dashed line shows the least-square fit to the data. The correspond-
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ing calibration factor is 1/3813.6mm/counts× 1000 µm/1mm = 0.2622 µm/counts. This
happens to be exactly the same as the calibration factor used in KAGRA [45], although
the data points used in KAGRA were manually selected. Nevertheless, the two meth-
ods happens to result in around 1% difference in calibration factor, which is practically
insignificant.

Error function

The choice of the error function is physics driven and, in KAGRA, it is widely use as an
intermediate calibration function for optical levers, which are the sensors that measure
local displacements of the suspended optics. Consider a Gaussian beam, the intensity of
the beam at a distance z from the beam waist is given by a Gaussian profile

I(r, z) = k(z) exp

(−2r2
w(z)2

)
, (6.4)

where exp(·) is the exponential function, z is the axial distance from the beam waist, k(z)
and w(z) are some functions depending on z, and r is the radial distance from the center
axis of the beam. Suppose the beam is measured at fixed distance z0 from the waist and
k(z0) = a and 2

w(z0)2
= b, where a and b are constants, the intensity of the beam, in terms

of Cartesian coordinates, is

I(x, y) = a exp
(
−b
(
x2 + y2

))
. (6.5)

If the beam (symmetrically, the sensor) is further constrained to move along the x-axis,
the intensity can be further simplified to

I(x) = c exp
(
−bx2

)
, (6.6)

where c ≡ a exp(−by2) is a constant.
The sensor of the optical lever in KAGRA is a quad photodiode (QPD), which is

composed of four photodiodes measuring a beam in four quadrants. For simplicity, in-
stead of four photodiodes, consider a sensor consist of two infinitely large photodiodes,
corresponding to one on the negative x plane and the other on the the positive x plane.
The slit between the two photodiodes now sits at x = 0 and the two photodiodes now
read an equal amount of light power. Now, denote the light power on the right plane by
P+ and the light power on the left plane by P− and supposed the beam is shifted by in
the x-direction by an amount of x′ (or equivalently, the slit shifted by an amount of −x′).
The light power on the right photodiode reads

P+(x
′) =

∫ ∞

−∞

∫ ∞

−x′
I(x, y) dxdy = a

∫ ∞

−∞

∫ ∞

−x′
exp
(
−b
(
x2 + y2

))
dxdy . (6.7)
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The y-integral gives

∫ ∞

−∞
exp
(
−by2

)
dy =

1√
b

∫ ∞

−∞
exp

(
−
(
y
√
b
)2)

d(y
√
b) (6.8)

Here, the Gaussian integral is simply
∫ ∞

−∞
exp
(
−t2
)
dt =

√
π . (6.9)

The y-integral then becomes

1√
b

∫ ∞

−∞
exp

(
−
(
y
√
b
)2)

d(y
√
b) =

√
π

b
. (6.10)

Substituting this into Eqn. (6.7) gives,

P+(x
′) =

a
√
π√
b

∫ ∞

−x′
exp
(
−bx2

)
dx

= a

√
π

b

∫ 0

−x′
exp
(
−bx2

)
dx+ a

√
π

b

∫ ∞

0

exp
(
−bx2

)
dx

= a

√
π

b

∫ 0

−x′
exp
(
−bx2

)
dx+

a
√
π

2b

∫ ∞

−∞
exp

(
−
(
x
√
b
)2)

d(x
√
b)

= −a
√
π

b

∫ −x′√b

0

exp

(
−
(
x
√
b
)2)

d(x
√
b) +

aπ

2b
.

(6.11)

Now the error function erf(t) is defined as

erf(z) ≡ 2√
π

∫ z

0

exp
(
−t2
)
dt . (6.12)

The light power measured by the right photodiode can immediately be seen as

Px(x
′) = −aπ

2b
erf
(
−x′
√
b
)
+
aπ

2b

=
aπ

2b
erf
(
x′
√
b
)
+
aπ

2b
,

(6.13)

where the property that erf(z) is an odd function is used in the last line.

Now, Eqn, (6.13) shows the light power measured by a photodiode in a shadow sensor,
i.e. sensors measuring the motion of a flag blocking an incidence beam. This shows that
the calibration function for shadow sensors, like an OSEM, can be perfectly modeled by an
error function. For optical levers, the sensor readout is a normalized differential readout
between the right and the left photodiode, (P+ − P−)/(P+ + P−). Here, the light power
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on the left sensor is

P−(x
′) = a

√
π

b

∫ −x′

−∞
exp
(
−bx2

)
dx

= a

√
π

b

∫ 0

−∞
exp
(
−bx2

)
dx− a

√
π

b

∫ 0

−x′
exp
(
−bx2

)
dx

=
aπ

2b
− aπ

2b
erf
(
x′
√
b
)
.

(6.14)

The differential of the two light power gives

P+(x
′)− P−(x

′) =
aπ

b
erf
(
x′
√
b
)
. (6.15)

The output of the QPD (and other optical sensors) is a number proportional to the
differential light power (light power). Redefining the constants, a and b, this makes

ferf(x; a, b, c, d) = a erf(b (x− c)) + d (6.16)

a perfect candidate as an calibration function for QPD, OSEMs, and photosensors, where
c and d are additional constants introduced for generality, and x here is the displacement
of the beam spot.

Having Eqn. (6.16) alone is not sufficient since the digital system only allows an
implementation of a calibration factor, not a function. Using the Taylor expansion, a
small distance x′ around x = c is

ferf(x
′; a, b, c, d) = d+ x′

[
d

dx
a erf(b (x− c))

]

x=c

+O
(
x2
)
, (6.17)

where O(·) is the big O notation. The derivative of the error function is simply

d

dx
erf(x) =

2√
π
exp
(
−x2

)
. (6.18)

The Taylor expansion then becomes

ferf(x
′; a, b, c, d) = d+ x′

2ab√
π

[
exp
(
−(b(x− c))2

)]
x=c

+O(x2)

= d+
2ab√
π
x′ +O(x2) .

(6.19)

This gives a calibration factor of
√
π/(2ab), which converts the raw sensor readout to the

measured displacement around x = c.

As an example, Fig. 6.2 shows the calibration of the beamsplitter (BS) tilt-sensing
optical lever. The corresponding sensor is a QPD sensing a superluminescent diode light
beam reflecting off the BS, so the beam spot displacement reflects the angular displace-

84 Optimizing Active Isolation Systems in Gravitational-Wave Detectors



6.1. SENSOR CALIBRATION

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Beam spot horizontal displacement (mm)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

d
iff

er
en

ta
l

li
gh

t
p

ow
er

re
ad

ou
t

BS tilt-sensing optical lever QPD calibration

Measurement

Error function fit

First order (2.887/mm)

Linear fit, 1% non-linearity (3.027/mm)

Figure 6.2: Calibration of the BS test mass optical lever tilt-sensing QPD. Blue dots:
Measurement. Orange solid line: Error function fit. Green solid line: First order ap-
proximation of the error function fit. Red dash-dot line: Linear function fit with 1%
non-linearity.

ment of the optics. Data points shown in Fig. 6.2 were measured by sliding the QPD
horizontally with a micrometer stage in 0.05mm steps. This simulates incremental dis-
placements of the optical lever beam.

As can be seen, the error function fits very well to the measured data in Fig. 6.2.
The fitted error function was obtained by solving the optimization problem described by
Eqn. (6.1) using Eqn. (6.16) as the calibration function. The minimization problem should
work with 0⃗ as a starting point. A reasonable guess would be {a, b, c, d} = {(max(yn) −
min(yn))/2, (yN − y1)/(xN − x1), xm, ym}, where yn is the readout data, xn is the beam
spot displacement data, n = 1, 2, 3, . . . , N , N is the number of data, and (xm, ym) is the
data point at midrange. In practice, it is also found that normalizing yn and xn with
max(|yn|) and max(|xn|), respectively, helps with numerical stability.

The same data set is also fitted using the aforementioned non-linearity method as
described in Algorithm. 1. As shown in Fig. 6.2, the first order approximation of the
fitted error function gives a calibration factor of 1/2.887 = 0.3464mm, whereas a linear
fit, assuming 1% non-linearity, gives a calibration factor of 1/3.027 = 0.3304mm. In
comparison, the two methods resulted in an 4.6% difference in calibration factor, which
is, again, negligible in practice.
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6.1.2 Geophone calibration

Unlike relative displacement sensors such as LVDTs and OSEMs, the readouts from in-
ertial sensors is an inertial readout, like the name suggested. Typically, the readout is
either in the unit of velocity or acceleration so the signal needs to be integrated to obtain
a displacement signal for control. Moreover, inertial sensors typically don’t have a flat
frequency response. This means the signals need to be compensated by a filter corre-
sponding to the inverse of the sensor response. To illustrate this, consider a geophone
model shown in Fig. 6.3. In the figure, the a geophone is attached to a platform, which
has an inertial displacement x. The geophone has a proof mass suspended by a spring
attached to the enclosure of the geophone and the proof mass has a displacement xm. A
magnet is attached to the proof mass and it induces electrical current to a coil fixed on the
enclosure. The readout is the induced voltage v generated by the moving magnet attached
to the proof mass. The goal is to obtain a calibration filter, i.e. a transfer function, that
converts the readout to the platform displacement x.

Figure 6.3: A internal diagram illustrating the sensing principle of a geophone measuring
the motion of a platform.

The equation of motion of the proof mass gives

m
d2xm
dt2

= −b
(
dxm
dt
− dx

dt

)
− k (xm − x) , (6.20)

where m is the mass of the proof mass, b is the damping coefficient, and k is the spring
constant. Rearranging gives

d2xm
dt2

+
b

m

dxm
dt

+
k

m
x =

b

m

dx

dt
+ kx , (6.21)
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and taking the Laplace transform of the equation yields
(
s2 +

b

m
s+

k

m

)
Xm(s) =

(
b

m
s+

k

m

)
X(s) , (6.22)

where s is the Laplace variable, Xm(s) = L{xm} is the Laplace transform of the proof mass
displacement, and X(s) = L{x} is the Laplace transform of the platform displacement.
The voltage readout v is proportional to the differential velocity

v ∝
(
dxm
dt
− dx

dt

)
, (6.23)

and the Laplace transform gives

V (s) = −G [Xm(s)−X(s)] s , (6.24)

where V (s) is the Laplace transform of the voltage readout v and G is the sensitivity1 of
the geophone which has a unit of V/(m/sec). Note that the minus sign is conventional.
Now, rearranging Eqn. (6.22) gives

(
s2 +

b

m
s+

k

m

)
[Xm(s)−X(s)] s = −s3X(s) , (6.25)

and substituting V (s) gives

V (s)

sX(s)
=

Gs2

s2 + b
m
s+ k

m

=
Gs2

s2 + 2ζωns+ ω2
n

,

(6.26)

where ωn ≡
√
k/m is the natural angular frequency of the geophone and ζ ≡ b/(2mωn) is

the damping factor. From here, it can be seen that the frequency response of the sensor
is Gs/(s2 + 2ζωns+ ω2

n), so the calibration filter H(s) is simply the inverse:

H(s) ≡ sX(s)

V (s)
=
s2 + 2ζωns+ ω2

n

Gs2
, (6.27)

which is a filter that converts the voltage readout to the velocity of the platform. To
get the platform displacement, simply integrate Eqn. (6.27) in the Laplace domain, i.e.
multiplying Eqn. (6.27) by an integrator 1/s.

The geophones used at KAGRA are the commercial model L-4C from the company
Sercel [46]. The typical parameters of the L-4C geophone is shown in Table 6.1. The
corresponding calibration filter is shown in Fig. 6.4.

1G is also called the generator constant of a geophone
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Sensitivity G
(

V
m/ sec

)
Damping factor ζ Natural frequency ωn (rad/sec)

276.8 0.28 2π (1Hz)

Table 6.1: Typical calibration parameters of the L-4C geophone [47].
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Figure 6.4: Bode plot of the L-4C geophone calibration filter. (a) Magnitude response of
the calibration filter. (b) Phase response of the calibration filter.

The typical parameters in Table 6.1 serve as an good starting point for the calibration
filter but they required some fine tuning for each geophone. However, according to the
specifications, the damping factor ζ in Table 6.1 is an open-circuit parameter. This means
that the damping factor is measured when the leads of the readout coil are opened, which
is not the actual operating condition. The actual damping factor depends on the resistance
value of the shunt resistor parallel to the coil. Moreover, the damping factor and resonance
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frequency of the L-4C geophone can differ from specification and even change over time
[48]. Therefore, it is recommended that the geophones are calibrated on site right before
installing them to the pre-isolators.

The calibration of a geophone can be done by fixing the it on the ground so it measures
the seismic noise. The geophone signal is then compared to that of a seismometer, which
is assumed to be more sensitive. Solving the optimization problem

min
G,ζ,ωn


 1

N

N∑

i=1

log



∣∣∣∣∣H(jωi;G, ζ, ωn)−

Ẋg(jωi)

V (jωi)

∣∣∣∣∣

2

W (ωi)


 , (6.28)

where N is the number of data point in the frequency domain, ωi is the frequency array,
V (jωi) is the raw geophone readout, Ẋg(jωi) is the ground velocity measured by the
seismometer, and W (ωi) is a frequency-dependent weighting function. The rationale
behind this cost function is that the calibrated readout H(jω)V (jω) needs to be the same
as the ground velocity Ẋg(jω) at all frequencies. The reason why V (jω) and Ẋg(jω)

are put into a fraction is because it is more convenient to measure a transfer function
in KAGRA diagnostic system (inherited from LIGO), so Ẋg(jωi)/V (jωi) is really one
complex frequency series. The logarithm is also used to scale the data values, accounting
for a large dynamic range. At last, the weighting function W (ωi) serves to weigh or filter
out part of the data where noise is dominated. It can be simply set as the coherence
function between the geophone readout and the seismometer readout. Another choice is
to set the weighting function to 0 or 1 depending on the whether the coherence function
exceeds a certain threshold, e.g. 0.5. It is worth noting that the optimization problem
denoted by Eqn. (6.28) corresponds to a transfer function fitting problem, which will
appear in later sections.

Example

In this example, the goal is to find a calibration filter following the method above. The
parameters for this geophone is G = 304.48V/(m/sec), ζ = 0.308, and ωn = 2.2π rad/sec,
which are all 10% above the typical values.

Fig. 6.5 shows a simulated result of a seismic noise (Blue) and the geophone readout
(Green). The geophone readout is also covered in a white readout noise (Orange) with
0.1 µm/

√
Hz. As can been seen, the geophone readout is dominated by readout noise

at low frequency (below 0.07Hz). Because of this, the data points at those frequencies
cannot be used and should be masked out.

Fig. 6.6 shows the coherence between the ground velocity and the geophone readout
(Blue). As expected, the coherence between the seismic noise and geophone readout is
low at below 0.07Hz so it can be used to define a weighting function in Eqn. (6.28). The
weighting function here is chosen to be 1 when the coherence is greater than 0.5, and 0
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Figure 6.5: Amplitude spectral density plots of a simulated seismic noise and geo-
phone readout. Blue: Ground velocity (µm/s/
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when the coherence is lower than 0.5. This weighting function is shown as orange line in
Fig. 6.6 and it reasonably masks out the useful data that are not noise dominated.
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Figure 6.6: Coherence plot and weighting function. Blue: Coherence between seismic
noise and geophone readout. Orange: Weighting function.

Fig. 6.7 shows the measured inverse geophone frequency response (blue), the ideal
calibration filter (orange), and the calibration filter fitted to the measured response.
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Figure 6.7: Geophone calibration filter. Blue: Measured inverse geophone frequency
response. Orange: Ideal calibration filter. Green dashed: Calibration filter fitted to the
measured response.

The measured inverse geophone frequency response is obtained via the ratio between
the Laplace transform of the ground velocity and the geophone readout, i.e. Ẋg(s)/V (s)

in Eqn. (6.28). The fitted calibration filter was obtained by solving the optimization prob-
lem Eqn. (6.28). The initial values for local optimization were obtained from Table 6.1.
And, the optimized values are G = 305.96V/(m/sec), ζ = 0.3088, ωn = 2.203π rad/sec,
which are all less than 1% away from the true values (G = 304.48V/(m/sec), ζ = 0.308,
and ωn = 2.2π rad/sec). The corresponding calibration filter is shown as green dashed
line in Fig. 6.7. As shown in the figure, the overlap between the fitted calibration filter
and the ideal calibration filter almost perfect.

6.1.3 Inter-calibration of sensors

The inter-calibration of sensors is required when two sensors signals need to be compared
or when they need to be combined using special control strategies such as sensor fusion
and sensor correction, which are later discussed in Sec. 7.1 and 7.2. In principle, the geo-
phone calibration method presented in Sec. 6.1.2 is already a method for inter-calibration
between the geophone and seismometer and is perhaps a more complex as there are three
variables. Generally, the inter-calibration of sensors only has one variable, that is, the
relative scale between the sensor readouts. Suppose there are two sensors that read a com-
mon signal and the amplitude spectral densities of the two readouts are given by Y1(f)

and Y2(f) and the second readout Y2(f) is the one that needs to be inter-calibrated.
Since the two sensors read the same signal, there relative phase between the two signals
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should be zero, which makes the amplitude spectral densities comparable. In this case,
the readouts can be related as Y1(f) = aY2(f), where a is the inter-calibration factor that
needs to be obtained. The inter-calibration factor can simply be obtained by solving the
optimization problem

min
a

(
1

N

N∑

i=i

log

[
a
Y2(fi)

Y1(fi)

]
W (f)

)
, (6.29)

where N is the number of data points, fi is the frequency data, and W (f) is a weighting
function to filter out or weight low-coherence data. The cost function is simply derived
from the assumption that log aY2(f)− log Y1(f) = 0, where the logarithm is taken to into
account the large dynamic range of data values.

6.2 Control basis alignment

As mentioned in Chap. 5, the sensors and actuators in each stage of the suspension are
not aligned in the desired directions. They need to be aligned via control matrices, in
particular, sensing matrices and actuation matrices, which appears in each stage of the
suspensions. The sensing matrix at each stage takes the calibrated sensor signals as inputs
and it outputs displacement signals in the desired control basis. Likewise, the actuation
matrix at each stage takes the control actuation signals in the control basis and it outputs
actuation signals to individual actuators. The control basis at each stage is defined by
the Cartesian and Euler basis as discussed in Sec. 5.1.

The sensing matrix can be decomposed into two types of matrices, geometric sens-
ing matrix and diagonalization sensing matrix. Likewise, the actuation matrix can be
decomposed into geometric actuation matrix and diagonalization actuation matrix. The
geometric matrices are defined by the placement of the hardware so it can be derived
using simple geometry. On the other hand, the diagonalization matrices are matrices
that finely decouples any residual couplings between different degrees of freedom. The
diagonalization matrices can only be derived from measurable cross-couplings.

For the type-B suspensions, the geometric sensing matrices for the pre-isolator and
intermediate mass are given in Ref. [29], and the actuation matrices for the pre-isolator,
intermediate mass, and test mass are also given. Detailed derivations for these matrices
are also given in Refs. [43, 44] in the form of Mathematica notebooks. Type-A and
type-Bp suspensions share similar mechanical structures with the type-B suspensions.
Therefore, the aforementioned matrices for type-A and type-Bp suspensions can be derived
straightforwardly using the same approaches. The derivation of the geometric sensing
matrix at the test mass stage is, however, more involved and is not provided anywhere.
This is to be discussed in Sec. 6.2.1, which is a re-elaboration of Ref. [49]. Sec. 6.2.1
also discusses diagonalization of sensing matrix and a real example is also provided. The
geometric actuation matrix of test mass stage is revisited as an example in Sec. 6.2.2.
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Diagonalization of the actuators is also discussed.

6.2.1 Sensing matrices

Sensing matrices are matrices that transform displacements from the sensor basis to the
desire control basis. Sensing matrix S in a stage can be described by

y = Sx , (6.30)

where x = (x1, x2, x3, . . . , xn)
⊺ is the array of sensor readouts x1, x2, x3, . . . , xn, y =

(y1, y2, y3, . . . , ym)
⊺ is the array of displacements in the each direction of the control basis,

and S ∈ Rm×n is the sensing matrix.

Figure 6.8: Sensor directions and control directions of the pre-isolator table (top view).

As a quick example, Fig. 6.8 shows the sensor directions and control directions of the
pre-isolator. In this case, the sensor readout array x at the pre-isolator would be the
three tangential displacements (at intervals of 120◦) along the circumference where the
LVDTs are located. And, y would be the three displacements / angular displacements,
longitudinal, transverse, and yaw. Geometrically, the sensing matrix is simply

Spreisolator =




cos θ sin θ R

cos
(
θ + 2

3
π
)

sin
(
θ + 2

3
π
)

R

cos
(
θ + 4

3
π
)

sin
(
θ + 4

3
π
)

R




−1

, (6.31)
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where the first sensor is located at an angle of θ from the negative transverse direction,
and R is the distance from the axis of rotation of the inverted pendulum to the sensors.

In practice, the geometric sensing matrix may not be sufficient and the control readouts
could contain observable residual cross-coupling between different degrees of freedoms.
In this case, the sensing matrix needs to be adjusted according to the cross-coupling
measured. However, directly adjusting the geometric sensing matrix may be confusing as
it couples geometric information and cross-coupling information in one matrix. Therefore,
in reality, the sensing matrix S is decomposed into two parts, geometric sensing matrix
Sgeo and diagonalization sensing matrix Sdiag,

S = SdiagSgeo . (6.32)

Note that the order of operation is important. In this section, the geometric sensing
matrix of the test mass is derived and the diagonalization of the sensing matrix is also
exemplified.

Sensing matrix of the optical lever

An optical lever is a device that measures small angular displacements of a reflective
surface. The word “optical lever” is used in KAGRA to describe the optical displacement
sensing setup at the test mass stage, which is composed of an actual optical lever and
other devices. The optical displacement sensing setup (optical lever from hereafter) reads
longitudinal displacement, pitch, and yaw of the optics. It is composed of a light source,
typically a superluminescent diode (SLED), two beam position sensors, typically quad
photodiodes (QPDs), and some small optics such as lens, mirrors, and beamsplitters.

Consider a simply optical lever setup as shown in Fig. 6.9. The beam strikes the
suspended optics at an incidence angle of α and is reflected by the suspended optics. The
suspended optics is rotated in the yaw direction by an amount of θY . At distance r from
the suspended optics, the position of the optical lever beam spot is shifted by an amount
of 2rθY , assuming small angles. A beam position sensor placed here will measure a beam
spot displacement of

x = 2rθY , (6.33)

which can be used to infer the yaw of the optics, i.e. dividing the displacement readout
by 2r.

Besides rotating in the yaw direction, the suspended optics can also shift in the longi-
tudinal direction. This creates a similar effect compared to that of a yaw rotation in the
optics. Fig. 6.10 shows the effect on the optical lever beam spot when the optics is shifted
in the longitudinal direction by an amount of xL. Note that in this case the optical lever
is located at the back side of the optics, which is not necessarily the case for all optics.
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Figure 6.9: A rotation in yaw of the optics causes the optical lever beam spot to shift
(top view).

Figure 6.10: A longitudinal shift of the optics causes the optical lever beam to shift (top
view).
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In this case, the beam spot position is shifted by an amount of (2 sinα)xL in the same
direction that a yaw rotation would cause. Combined with the effect of rotation, a beam
position sensor would sense a superposition of yaw and longitudinal displacement

x = 2rθY + (2 sinα)xL . (6.34)

This means one beam position sensor cannot tell apart yaw and longitudinal displacement.

To remedy this issue, two beam position sensors are used instead and a beamsplitter
is used to divide the beam into two. There are two options where the other sensor can
be placed, 1) at a different distance r′, or 2) behind a lens. In KAGRA, the latter
configuration was chosen and it is shown in Fig. 6.11. In this configuration, a lens is
placed at rlens away from the suspended optics. The second beam position sensor, reading
a beam spot displacement of x2, is placed at distance d behind the lens. In this case,
the beam spot displacement x2 can be derived using the ray transfer matrix analysis [40].
Using the ray transfer matrices for beam propagation and thin lens, it gives

(
x2

θ2

)
=

[
1 d

0 1

][
1 0

− 1
f

1

][
1 rlens

0 1

](
(2 sinα)xL

2θY

)
, (6.35)

where θ2 is the angle of the beam when it reaches the second beam position sensor, and
f is the focal length of the convex lens. This gives the beam spot displacement

x2 = (2 sinα)

(
1− d

f

)
xL + 2

[(
1− d

f

)
rlens + d

]
θY . (6.36)

Now, the distance d is the distance between the lens and beam position sensor on the
optical table. It is a design parameter. It is obvious that when

d =
rlensf

rlens − f
, (6.37)

the beam spot at the sensor plane reads

x2 = −
2f sinα

rlens − f
xL . (6.38)

This means that the beam position measured by the second sensor is only sensitive to
longitudinal displacement xL but not yaw θy. For this reason, the second beam position
sensor is referred to the length-sensing QPD while the first beam position sensor is called
the tilt-sensing QPD2.

This is not yet the full story. Each beam position sensor also measures the vertical
displacement of the beam spot so there are in total four readouts. To break it down, the

2The tilt-sensing QPD is technically still coupled to longitudinal displacement according to Eqn. (6.34).
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Figure 6.11: Sensing the beam spot position behind a convex lens. A convex lens is placed
at rlens from the suspended optics. The sensor is placed at distance d behind the lens.

tilt-sensing and length-sensing optical lever path can be analyzed separately. Without
loss of generality, consider the optical lever with tilt-sensing QPD shown in Fig. 6.12.
The optical lever beam travels along an arbitrary vector in the 3D space and is reflected
by the suspended optics. The reflected beam travels a vector of r⃗ to reach the tilt-sensing
QPD. The tilt-sensing QPD reads the beam position in two directions xtilt and ytilt. In
reality, the directions of xtilt and ytilt do not necessarily align with the beam displacements
caused by a pure yaw (horizontal) or a pure pitch (vertical). But, for simplicity, let us
assume that they do align. The beam of the optical lever is projected into a vertical plane
and a horizontal plane. And on those planes, the lengths of the reflected beam are rh and
rv on the horizontal and vertical plane, respectively. The angle of incidences, as viewed
on the horizontal and vertical planes, are αh and αv, respectively.

Figure 6.12: Tilt-sensing path of the optical lever. (Not to scale.)

Here, without loss of generality, the beam spot at the optics is off-centered horizontally
towards the x and y direction by an amount of δx and δy, respectively. With non-zero
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δx or δy, a rotation in yaw or pitch causes the reflection spot at the optics to move
longitudinally, simulating a longitudinal displacement of the optics. This must be taken
into account in the derivation of the sensing matrix. The tilt-sensing QPD readouts now
read

xtilt = (2 sinαh) (xL + δyθP + δxθY ) + 2rhθY , (6.39)

and
ytilt = (2 sinαv) (xL + δyθP + δxθY ) + 2rvθP , (6.40)

where δxθY and δyθP are the simulated longitudinal displacements due to rotation in yaw
and pitch and an offsetted beam. Again, note that here the assumption is that xtilt and
ytilt are aligned with the beam spot displacements caused by a pure yaw and pure pitch,
respectively, of the optics.

Figure 6.13: Length sensing path of the optical lever. (Not to scale)

The length-sensing path of the optical lever is shown in Fig. 6.13. In reality, length-
sensing and tilt-sensing share the same light source. The beam is split into two paths
by a beamsplitter hence they can be considered as separate paths as shown in Fig. 6.12
and Fig. 6.13. For the length-sensing part of the optical lever, the beam again is reflected
from the suspended optics, and travels a path r⃗lens towards a convex lens with focal length
f . The beam then travels a short distance d further to reach the length-sensing QPD,
which reads the beam spot position in two directions xlen and ylen. Again, for simplicity,
let us assume that xlen and ylen are aligned with the directions of the beam displacements
caused by a pure yaw and pure pitch, respectively. Following Eqn. (6.36), the readouts
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xlen can be straightforwardly written as

xlen = 2 sinαh

(
1− dh

fh

)
(xL + δyθP + δxθY ) + 2

[(
1− dh

fh

)
rlens,h + dh

]
θY , (6.41)

where dh is the vector between the lens and the length-sensing QPD projected on the
horizontal plane, fh is the horizontal projection of the focal length on the horizontal
plane, rlen,h is the horizontal length between the lens and the reflection spot, and δxθY

is the simulated longitudinal displacement due to a rotation in yaw and a horizontally
offsetted beam. Assuming that the angle between the reflected beam and the horizontal
plane is ϕh, the horizontal projections dh, fh, and rlens,h can be written as d cosϕh, f cosϕh,
and rlens cosϕh, respectively. This simplifies Eqn. (6.41) to

xlen = 2 sinαh

(
1− d

f

)
(xL + δyθP + δxθY ) + 2 cosϕh

[(
1− d

f

)
rlen + d

]
θY . (6.42)

Again, it is easy to see that at a sensor placed at d = rlensf/(rlens − f) decouples the
readout from the yaw motion θY , assuming small δx and δy. In this case, the horizontal
length-sensing readout can be simplified to

xlen = −2f sinαh

rlens − f
(xL + δyθP + δxθY ) . (6.43)

Similarly, without further derivation, the vertical length-sensing readout can be written
as

ylen = −2f sinαv

rlens − f
(xL + δyθP + δxθY ) . (6.44)

At last, combining Eqn. (6.39), (6.40), (6.43), and (6.44) yields




xtilt

ytilt

xlen

ylen




=




2 sinαh 0 2rh

2 sinαv 2rv 0

−2f sinαh

rlens−f
0 0

−2f sinαv

rlens−f
0 0






xL + δyθP + δxθY

θP

θY




=




2 sinαh 0 2rh

2 sinαv 2rv 0

−2f sinαh

rlens−f
0 0

−2f sinαv

rlens−f
0 0






1 δy δx

0 1 0

0 0 1






xL

θP

θY




. (6.45)

Now, this equation relating the suspended optics displacement / angular displacements
to the optical lever readouts assumes that the horizontal and vertical readouts align with
the beam displacement vectors caused by pure yaw and pure pitch of the optics, which is
not necessarily the case. To alleviate these assumptions, the left-hand side of Eqn. (6.45)
must be multiplied by a matrix that takes into account the rotational misalignment of
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the QPDs, i.e.



cosψtilt sinψtilt 0 0

− sinψtilt cosψtilt 0 0

0 0 cosψlen sinψlen

0 0 − sinψlen cosψlen







xtilt

ytilt

xlen

ylen




=




2 sinαh 0 2rh

2 sinαv 2rv 0

−2f sinαh

rlens−f
0 0

−2f sinαv

rlens−f
0 0






1 δy δx

0 1 0

0 0 1






xL

θP

θY


 ,

(6.46)

where ψtilt denote the angle of misalignment between the tilt-sensing QPD readouts and
the pitch-yaw axis, and ψlen denotes that of the length-sensing QPD. Nevertheless, an
additional misalignment parameter δd can be added to representing the misplacement of
the length-sensing QPD such that d = rlensf/(rlens − f) + δd. But, this is not included in
the equation for simplicity.

All optical levers in KAGRA have plane of incidence aligned to either the horizontal
plane (type-A and type-Bp suspensions) or the vertical plane (type-B supsensions). This
means that sensing matrix can be drastically simplified. For a horizontal optical lever,
rv = rh cosαh and αv = 0. Assuming that optical lever is perfectly aligned, i.e. ψtilt =

ψlen = δx = δy = δd = 0, the QPD readouts for a horizontal configuration read




xtilt

ytilt

xlen

ylen




=




2 sinαh 0 2rh

0 2rh cosαh 0

−2f sinαh

rlens−f
0 0

0 0 0






xL

θP

θY


 , (6.47)

which gives a geometric sensing matrix of

SOL,horizontal =




2 sinαh 0 2rh

0 2rh cosαh 0

−2f sinαh

rlens−f
0 0

0 0 0




+

, (6.48)

where [·]+ denotes the pseudo inverse of a matrix. As for the vertical optical levers, the
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geometric sensing matrix is simply

SOL,vertical =




0 0 2rh cosαv

2 sinαv 2rv 0

0 0 0

−2f sinαv

rlens−f
0 0




+

. (6.49)

Diagonalization of sensing matrices

With the plane of incidence aligned either on the horizontal plane or the vertical plane, the
geometric sensing matrix is drastically simplified. However, the given geometric sensing
matrix does not guarantee that the optical lever readouts are aligned perfectly to the
control basis. The geometric sensing matrices were derived with the assumption that the
optical levers are perfectly aligned, which is not possible in reality. The same can be
said for other sensors in other stages. In experience, cross-couplings between different
control degrees of freedom in the order of 10−2 − 10−1 can usually be observed when
using the geometric sensing matrix. While the fundamental assumption of the control
topology described in Chap. 5 requires each degree of freedom to be able to controlled
independently, it is best to reduce cross-couplings in sensor readouts to the greatest extent.

For the optical lever, there are six misalignment parameters, one angle of incidence αh

or αv, two distances of the reflection spot from the center of the optics δx and δy, two QPD
rotational misalignment angles ψtilt and ψlen, and one length-sensing QPD misplacement
δd, to list all of them. Putting them into the geometric sensing matrices Eqn. (6.48) or
(6.49) would yield no zero elements in the matrix. With three control readouts, longitudi-
nal displacement xL, pitch θP , and yaw θY , there are six possible ways that the degrees of
freedom can be coupled to each other, longitudinal to pitch readout, longitudinal to yaw
readout, pitch to longitudinal readout, pitch to yaw readout, yaw to longitudinal readout,
and yaw to pitch readout. Therefore, finding the correct values of the six misalignment
variables would, in principle, decouple all degrees of freedom without the use of a diago-
nalization matrix in the form of Eqn. (6.32). One major advantage of this approach the
preservation of calibration. Although the misalignment parameters can be derived from
measurable cross-couplings, the process can be tedious. On the other hand, using of a
diagonalization matrix to decouple all degrees of freedom is extremely convenient. As-
suming that the calibration was correct before implementing the diagonalization matrix,
with small non-diagonal values in the diagonalization matrix, the calibration factors are
majorly preserved. In any case, post calibration can always be done in several ways, for
example, inter-calibrating the diagonalized readouts with with the readouts at the pre-
isolator. Therefore, in KAGRA, using a diagonalization sensing matrix is the preferred
way to achieve a finer control basis alignment of the sensors.

To see how a diagonalization sensing matrix works, let us assume that a geometric
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sensing matrix Sgeo operating on sensor readouts x gives a coupled control readout y′ =

Cy such that
Sgeox = y′ = Cy , (6.50)

where y′ = {y′i} is the coupled control readout, C = {Cij} is the coupling matrix and
y = {yi} is the array of desired readout, e.g. {xL, θP , θY } for the optical lever. Suppose
the geometric sensing matrix correctly transforms the sensor readouts to give calibrated
control readouts, the coupling matrix can be written as

Cij =




1 , i = j

y′i
yj
, i ̸= j

, (6.51)

where y′i/yj is the cross-coupling from the jth displacement to the ith readout, or simply j
to i coupling. If the couplings are measurable, then it is obvious that an additional matrix
Sdiag = C−1 operating on the coupled readout would yield the desired control readout,

SdiagSgeox = C−1Cy = y , (6.52)

where Sdiag is the diagonalization sensing matrix. Therefore, there are two stages of sens-
ing matrices in the control topology. The calibrated sensor readouts first go through the
geometric sensing matrix, and then, the diagonalization sensing matrix. One major ad-
vantage of using the diagonalization sensing matrix is that it can be obtained multiple
times in an iterative process, which improves the quality of diagonalization in each iter-
ation. For consecutive diagonalization, the new diagonalization sensing matrix is simply
Snew
diag = C−1Sold

diag.
In order to obtain the diagonalization sensing matrix, the cross-couplings y′i/yj must

be measured. Here, y′i is just the ith control readout output from the geometric sensing
matrix, which can be measured directly. As for yj, the jth actual displacement of the
suspension, a successful measurement of it relies on one of two things

1. Whether the suspension has a resonance involving only that degree of freedom but
not the other degrees of freedom that the diagonalization is attempting to decouple
from, or

2. Whether there is a way to actuate the suspension in that degree of freedom but not
the degrees of freedom that the diagonalization is attempting to decouple from.

Suppose the there exists a resonance in the jth degree of freedom, it needs to be excited
so the signal-to-noise ratio is high enough for a good measurement of the coupling. There
are two ways this can be done, either by injecting a white noise or an impulse signal
to that degree of freedom via the actuators. Here, the actuators are not assumed to
be aligned to the control basis yet but it does not affect the results. This is because
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the frequency spectrum of a white noise or an impulse signal is flat. This means that
any actuation coupling is frequency-independent and only the impulse responses of the
suspension are can be observed, i.e. shapes that look like the transfer functions. At the
resonance frequency, the jth readout y′j is dominated by the resonance of the jth degree of
freedom, even if it is cross-coupled to other degrees of freedom Under this condition, yj
can be estimated directly from the impulse response at the resonance frequency using the
y′j readout, and y′i can also be read at the same frequency in a simultaneous measurement.
On the other hand, if the particular degree of freedom can be actuated purely, then yj ≈ y′j

and y′i can be measured straightforwardly when the suspension is actuated purely in that
degree of freedom.

The SRM suspension at KAGRA is used as an example to demonstrate the use of
a diagonalization matrix. Fig. 6.14 shows three measurements of the readouts in the
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(a) SRM coupled readouts with longitudinal white noise actuation
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(b) SRM coupled readouts with pitch white noise actuation
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(c) SRM coupled readouts with yaw white noise actuation

Longitudinal readout

Pitch readout

Yaw readout

Figure 6.14: SRM test mass stage control readout without diagonalization sensing matrix.
(a) Readouts with white noise actuation in the longitudinal direction. (b) Readouts with
white noise actuation in the pitch direction. (c) Readouts with white noise actuation in
the yaw direction. Blue: Longitudinal readout. Orange: Pitch readout. Green: Yaw
readout.
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control basis, without a diagonalization sensing matrix, at the test mass stage of the
SRM suspension, each corresponding to a white noise actuation in longitudinal, pitch,
and yaw direction using the test mass actuators with the geometric actuation matrix
(To be discussed in Sec. 6.2.2.). The actuators are therefore assumed to be not aligned
to the control basis. Here, the readouts in the control basis are outputs directly from
the geometric sensing matrix of the optical lever. As can be seen, the geometric sensing
matrix indeed coarsely aligns the sensors to the control basis. This is indicated by the
fact that all three readouts have distinct shapes corresponding to different dynamics of
the suspension.

In Fig. 6.14, the resonance frequencies in interest are identified from the diagonal
readouts, i.e. longitudinal readout with longitudinal actuation (blue line in(a)), pitch
readout with pitch actuation (orange line in (b)), and yaw readout with yaw actuation
(green line in (c)). The corresponding resonance frequencies are located at 0.658Hz

(pendulum mode), 0.838Hz (Pure pitch mode), and 1.010Hz / 1.354Hz (pure yaw mode).
Except for the pendulum mode at 0.658Hz, these resonances are pure in each degree of
freedom and should not be observed in readouts of other degrees of freedom. Therefore,
readouts at these resonance frequencies can be used to determine the coupling ratios Cij

between different degree of freedom. The pendulum mode, which is a resonance mode
involving longitudinal and pitch motion of the optics, cannot be used to determine cross-
coupling between longitudinal displacement and pitch readout. However, it is still useful
for determining longitudinal displacement to yaw coupling as it should not be observed
in the yaw readout.

In subplot (a) of Fig. 6.14, a small peak is observable in the yaw readout at 0.658Hz.
However, in this case it is unclear whether this coupling comes from the longitudinal
displacement or pitch at this stage. Therefore, the coupling ratio from longitudinal dis-
placement to yaw readout is undetermined for the first iteration. In subplot (b), the pitch
resonance is very clear and it obviously couples to both longitudinal and yaw readouts.
The corresponding coupling ratios are −0.018781 and 0.00968755 for longitudinal and
yaw readouts, respectively. Note that the values are not the ratio of the two amplitude
spectral densities. The magnitude of the ratios are obtained from the ratio between the
Fourier transform of the readouts (not shown here), and the signs are obtained from the
phase. The coupling ratio is said to be valid only when the phase is close to 0◦ or ±180◦,
which correspond to positive and negative signs, respectively. Any phase in between 0◦

and ±180◦ means the result is inconclusive and a coupling ratio cannot be obtained. In
subplot (c), the yaw resonance is observable at 1.354Hz. The yaw to longitudinal and
pitch readouts couplings are also observable and the ratios are 0.0158224 and −0.0153659
for longitudinal and pitch readouts, respectively.

The longitudinal displacement to pitch readout coupling cannot be determined from
any resonances since a pure longitudinal mode is simply non-existence. However, a short
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experiment involving the pre-isolator can be done to obtain this ratio. The three degrees
of freedom of the pre-isolator table are longitudinal, transverse, and yaw. A DC offset,
i.e. actuation at 0Hz, in longitudinal actuation signal of the pre-isolator could shift
the would cause a shift of the whole suspension chain in the longitudinal direction. If
the pre-isolator actuators are not diagonalized, this would result in a small shift in the
transverse direction and a small rotation in the yaw direction. But, a DC shift in the
pre-isolator can, in principle, never cause the optics to pitch. Therefore, any shift in
the pitch readout at the optics during this experiment can be treated as coupling from
longitudinal displacement and can be used compute the coupling ratio from longitudinal
displacement to pitch readout.

The experiment was performed and the results are as follows. A static shift in the
positive longitudinal direction was applied to the pre-isolator. After that, the longi-
tudinal readout and pitch readout from the optical lever changed by and amount of
185.1934 µm and 1.8085 µrad. This gives a longitudinal to pitch readout coupling of
1.8085/185.1934 = 0.00976547. Combining this ratio with the values obtained from the
resonance measurements, the coupling matrix is

C2 =




1 −0.018781 0.0158224

0.00976547 1 −0.0153659
0 0.00968755 1


 . (6.53)

The inverse of this matrix was applied as the initial diagonalization sensing matrix for
the first iteration and the measurement was repeated.

After the implementation of the initial diagonalization sensing matrix, nearly all cross-
coupling observed previously becomes undetectable with one exception. The decoupling
of the pitch resonance from the yaw readout reveals a longitudinal displacement to yaw
readout coupling at the pendulum mode resonance frequency. Fig. 6.15 shows the readouts
of the optics displacement with white noise actuation in the longitudinal direction. These
readouts are obtained after implementing the inverse of the coupling matrix Eqn. (6.53).
As can be seen, the 0.658Hz peak in the yaw readout becomes far more observable com-
pared to that in subplot (a) of Fig. 6.14. The reason of this is perhaps due to the removal
of pitch to yaw coupling, which may have partially canceled this peak in the initial mea-
surement. The 0.658Hz peak in the yaw readout shown in Fig. 6.15 cannot be a pitch to
yaw coupling. If it was due to pitch motion, there would have been three peaks instead
of one, as there are three (at least) observable resonances in the pitch readout (orange
line as shown in the figure). Therefore, it has to be a longitudinal displacement to yaw
readout coupling and the coupling ratio was obtained to be 0.0331021. This gives a second
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SRM initial diagonalization readouts with longitudinal white noise actuation

Longitudinal readout

Pitch readout

Yaw readout

Figure 6.15: SRM initially diagonalized test mass readouts with white noise actuation in
the longitudinal direction. Blue: Longitudinal readout. Orange: Pitch readout. Green:
Yaw readout.

coupling matrix of

C2 =




1 0 0

0 1 0

0.331021 0 1


 . (6.54)

The final diagonalization sensing matrix can be obtained as Sdiag = C−1
2 C−1

1 .

Fig. 6.16 shows the measurements taken after implementation of the diagonalization
sensing matrix. As can be seen, the original cross-couplings have been reduced by a great
extent. As a verification, the readouts were also taken for an impulse actuation instead
of white noise actuation and the results are shown in Fig. 6.17. In this experiment,
an impulse signal was sent to one of the actuators at the test mass stage, exciting all
resonances in all degrees of freedom. Unfortunately, the signal-to-noise ratio below 0.8Hz

is worse compared to that of the white noise actuation measurements and therefore cannot
be used to verify the results. Above 0.8Hz, it is clear that the cross-couplings are very
minimal. Yaw displacement to pitch readout couplings at 1.010Hz and 1.354Hz are
still clearly visible but they are well below the 10−2 level. With that said, it is worth
mentioning that the 10−2 cross-coupling level is not a benchmark and there is currently
no required specifications for diagonalization. The control performance degradation due
to cross-coupling is not well-studied at the moment and this should be investigated in the
future.
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(a) SRM diagonalized readouts with longitudinal white noise actuation
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(b) SRM diagonalized readouts with pitch white noise actuation
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(c) SRM diagonalized readouts with yaw white noise actuation

Longitudinal readout

Pitch readout

Yaw readout

Figure 6.16: SRM test mass stage control readout with diagonalization sensing matrix.
(a) Readouts with white noise actuation in the longitudinal direction. (b) Readouts with
white noise actuation in the pitch direction. (c) Readouts with white noise actuation in
the yaw direction. Blue: Longitudinal readout. Orange: Pitch readout. Green: Yaw
readout.

6.2.2 Actuation matrices

Actuation matrices are matrices that align the desired actuators to the control basis.
Technically, it is the other way around: It operates on the control actuation signal u and
distribute the control signals to each individual actuators,

Au = a , (6.55)

where u = {u1, u2, u3, . . . , up} is the array of control actuation signals from the, e.g. actu-
ation signal in the longitudinal direction, a = {a1, a2, a3, . . . , aq}, is the array of actuation
signals going to each individual actuator, e.g. actuation signal of the first actuator, and
A ∈ Rq×p is the actuation matrix aligning the control signals to the actuators.

Like sensing matrices, the actuation matrix maybe decomposed into two matrices,
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SRM diagonalized readouts with an impulse actuation

Longitudinal readout

Pitch readout

Yaw readout

Figure 6.17: SRM test mass stage control readout with diagonalization matrix with im-
pulse actuation. Blue: Longitudinal readout. Orange: Pitch readout. Green: Yaw
readout.

geometric actuation matrix and diagonalization actuation matrix

A = AgeoAdiag , . (6.56)

where Ageo is the geometric actuation matrix and Adiag is the diagonalization actuation
matrix. Note that the order of operation is different from that of sensing matrix (6.32) and
this is important. The goal of the actuation matrices is to correctly distribute actuation
signals to the actuators such that each control signal only actuates the system in the
corresponding degree of freedom. In this section, the geometric actuation matrix at the
test mass stage is derived as an example and the diagonalization of actuation matrices is
discussed.

Actuation matrix of the test mass actuators

Fig, 6.18 shows the location and direction of actuation at the test mass stage of the main
optics suspensions. As shown in the figure, the actuators at located the four corners of
the optics, top-left, bottom-left, bottom-right, and top-right, in the order of ascending
actuator number. This particular configuration is exclusive to the type-B and type-Bp
suspensions. The type-A suspensions use a diamond configuration where four actuators
are placed top and bottom, left and right of the suspended optics.

The positive direction of the actuation is typically defined as the direction of the
longitudinal direction. Therefore, a positive actuation signal in any of the actuators
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Figure 6.18: Test mass actuators located at four corners of the test mass.

pushes the suspended optics in the longitudinal direction. Let the control actuation
signals be u = [uL, uP , uY ]

⊺, where uL is the actuation in the longitudinal direction, uP
is the actuation in the pitch direction, and uY be the actuation in the yaw direction.
This gives the first column of the geometric actuation matrix to be [1, 1, 1, 1]⊺. Note that
the scale is arbitrary because there is no calibration factors to be preserved, unlike the
geometric sensing matrix.

Actuators 1 and 4 are above the center of mass of the optics and actuators 2 and 3
are below that. Treating the suspended optics as a free mass, positive signals in actuators
1 and 4 give a torque in the pitch direction, and positive signals in actuator 2 and 3
give a torque in the negative pitch direction. Assuming that the actuators are placed
with reflection symmetry along the horizontal plane, this gives the second column of the
actuation matrix to be [1,−1,−1, 1]⊺. Similarly, actuators 1 and 2 are on the left side
of the optics and actuators 3 and 4 are on the right side. Positive signals in actuators 1
and 2 give a torque in the negative yaw direction while positive signals in actuators 3 and
4 give a torque in the positive direction. This gives the third column of the geometric
actuation matrix to be [−1,−1, 1, 1]⊺. The geometric actuation matrix at the test mass
stage is fully defined as

ATM =




1 1 −1
1 −1 −1
1 −1 1

1 1 1



. (6.57)

The reason why the number 1 is used in the matrix is simply to avoid confusion to
the operators. The geometric actuation matrix represents the geometric placement of the
actuators and it should be easy to understand from the digital system. At least, this is
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the general consent at KAGRA. Therefore, there is no reason to use other numbers other
than 1 in the geometric actuation matrix.

It should be pointed out that the choice of this matrix is rather unnatural and is
different from what is provided in Refs. [43, 44, 29]. One alternative way to approach the
scaling is to firstly calibrate the actuators in units of N/counts using the output filters as
shown in Fig. 5.1. Then, the actuation signals (output of the actuation matrix, inputs of
the output filters) are forces applying to the optics at the locations of the actuators. And
then, the control signals (outputs of the control filters, input of the actuation matrix)
are forces or torques acting on the optics in the control degrees of freedom. In this
case, the geometric actuation matrix then carries the information of normalization factors
and geometric information such as the position of the actuators. This is the convention
followed by Refs. [43, 44]. However, in reality, unlike sensor calibration, getting the
calibration factors for the actuation is very difficult. This is due to the coil-magnet nature
of the actuators where actuation efficiency depends on the distance between the magnet
and the coil. The actual distance between the magnet and the coil can change within a
certain tolerance and is unknown before the installation. For this reason, the actuators
cannot be calibrated before installation. And, the actuators cannot be calibrated when
they are already installed. Therefore, setting the geometric actuation matrix to retain
physical units is not that feasible in reality.

Nevertheless, another alternative way to scale the geometric actuation matrix is to
have each column normalized to a certain norm. In Ref. [29], the 1-norm of each is
normalized to 1. Another possible choice is to choose the eigenvectors from the singular
value decomposition of the matrix (6.57), which naturally have 2-norms normalized to 1.
In any case, the scale of the actuation matrix is merely a convention or preference and
has no actual affection to the control performance.

Diagonalization of actuation matrices

The geometric actuation matrix is not sufficient to align the control basis to the actuator
basis. This is because the geometric actuation matrix was derived with the assumption
that the actuated objects are free bodies while they are really constrained by the dynamics
of the suspension. Moreover, the geometric actuation matrix does not take into account
the variation of the actuators. Therefore, the geometric actuation matrices are often not
sufficient in aligning the control basis. However, in contrast to its sensing counterpart, the
diagonalization of actuation matrices is not as straightforward and is often not considered.
This is because actuation matrix diagonalization is not as important when feedback control
in action. Actuation cross-couplings between different degrees of freedom can be treated
as disturbances, which are minimized with active control.

At 0Hz, a non-zero actuation signal applies a static force to the suspension, causing
it to shift. The relationship between the control actuation signals and the suspension
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displacement reads
y = Eu , (6.58)

where E is the actuation efficiency matrix, u is the actuation signals in the control basis,
and y is the displacement of the suspension. The off-diagonal elements of the E matrix
represents the cross-coupling and are ideally zero. The diagonal elements are the actuation
efficiencies of the actuators. Depending on the situation, they need to be retained after
even diagonalization so the scale of the diagonal transfer functions are comparable. E is
physical and cannot be altered. Therefore, any additional control matrices must operate
before the actuation efficiency matrix. In order to achieve actuation diagonalization, it
is obvious that by modifying control actuation signals from u to E−1diag(E)u, it gives a
diagonal actuation efficiency, i.e.

E
[
E−1diag(E)u

]
= diag(E)u = y . (6.59)

Comparing this with Eqn. (6.55) and (6.56), it is easy to see that by setting the diago-
nalization actuation matrix to

Adiag = E−1diag(E) (6.60)

would achieved the required results.

With a diagonalized sensing matrix, measuring the actuation efficiency matrix E is
straightforward. For this reason, the sensing matrix should be diagonalized before di-
agonalizing the actuation matrix. The actuation efficiency matrix can be written as
E = {Eij} and

Eij =
yi
uj
, (6.61)

where yi is the ith displacement in the control basis, and uj is the jth actuation signal in
the control basis. A known static actuation signal uj can be applied one at a time and all
displacements y can be measured using the diagonalized displacements signals, giving one
column of the actuation efficiency matrix E. Like sensing matrices, the diagonalization
actuation matrix can be obtained iteratively by setting the new diagonalization actuation
matrix to Anew

diag = Aold
diag(E

new)−1diag(Enew).

The actuation diagonalization described above corresponds to the diagonalization at
0Hz but the procedure can be done at any one and only one frequency. In such case,
the actuation injection would be sinusoidal at a particular frequency. The readback the
actuation efficiency Eij would then be the ratio between between the fourier transform of
the displacement signal yi and the actuation signal uj at the frequency of the sine wave.
Again, this measurement is only said to be value if the phase between yi and uj is close
to 0◦ or ±180◦. Any measured phase between 0◦ and ±180◦ renders the result not useful.
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At 0Hz, the phase between the injection and displacement is typically 0◦ or ±180◦, owing
to the spring-mass nature of the suspension. The same can also be said for frequencies
much higher than the resonance. Therefore, diagonalization are typically done at these
frequencies.

There is a caveat to this approach, that is, the actuators are only diagonalized at one
frequency and there is not guarantee that the actuators are also diagonalized at other
frequencies. In worst case, the actuation cross-coupling is reduced at one frequency and
increased at other frequencies. The actuation efficiency matrix E in Eqn. (6.58) represents
the relationship between the actuation signal and the displacement at one frequency.
To generalized the relationship, the actuation efficiency is simply the actuation transfer
functions and E should be replaced by a transfer function matrix, which denotes the input-
output relationship of a multiple-input-multiple-output system. Therefore, the proper way
to approach actuation diagonalization is to model all transfer functions and compute the
frequency-dependent actuation diagonalization matrix using Eqn. (6.60) via an analytic
form of the matrix inverse. Alternatively, the measured transfer function matrix, in the
form of a complex array, can be inverted numerically to obtain the frequency response of
the require frequency-dependent actuation matrix. And then, the each frequency response
element in the matrix can be modeled by transfer functions. Either way, the work can be
tedious and unnecessary. So, this type of diagonalization has never been implemented at
KAGRA due to a tight schedule.

6.3 Modeling and fitting

One major aspect in control system is called system identification, which seeks to obtain
a mathematical model a dynamical system from measured data. The goal of system
identification is not to fully characterize the dynamical system. Instead, the goal is
to obtain a model that captures the required system dynamics such that the control
performance and stability evaluated with the model sufficiently represent those of the real
system when control is implemented. This way, the controller can be designed and tested
in simulations before actually implementing the control systems.

System identification, by itself, is an ongoing field of research and there are a lot of
advanced methods, such as the eigensystem realization algorithm [50], that can identify
the full dynamics of the suspension as a multiple-input-multiple-output system. Since the
control topology of the active isolation assumes each degrees of freedom to be decoupled,
each degrees of freedom can be assumed to be a single-input-single-output system, as
shown in Fig. 5.5. In order to design a controller for this, the plant needs to be modeled
and it is simply the ratio between the actuation and the displacement. In addition, the
spectrum of the disturbance and the noise defined in Fig. 5.5 can optionally be modeled
by empirical models or even transfer functions. The former can be used to evaluate the
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closed-loop performance and noise budget while the latter is useful for H∞ optimization,
which is to be discussed in Part III. In this section, both topics are covered. Sec. 6.3.1
discusses the modeling of the actuation plant with a focus on fitting transfer functions of
the multiple-pendulum suspensions. A real example will also be given to demonstrate the
methods discussed. Sec. 6.3.2 discusses the modeling of frequency spectrum, which will
be useful in Part III.

6.3.1 Modeling frequency response data with transfer functions

In this subsection, a systematic approach is given to obtain a transfer function model
given a measured frequency response of the suspension. The approach can be divided
into a few steps:

1. Measurement,

2. Model selection, and

3. Regression.

Notes on frequency response measurement

To model the dynamics of the system, the first step is to obtain a frequency response of
the system. Here, the dynamics is referred to the open-loop dynamics of the system, i.e.
P (s) in Fig. 5.5. In principle, this is as easy as injecting a known actuation signal u and
then obtain a measurement of the system output y. The frequency response of the plant
P (jωi) can then be estimated to be

P (jωi) ≈
Puy(ωi)

Puu(ωi)
, (6.62)

where ωi is the discrete angular frequency data, Puy(ωi) is the cross power spectral density
between the actuation u and the output y, and Puu(ωi) is the power spectral density of
the actuation signal u. KAGRA utility diag / diaggui and LIGO ultility dtt / dttgui

automatically does this estimation when a transfer function plot3 is requested4. Therefore,
obtaining a frequency response data is straightforward at KAGRA.

However, there are some caveats that are worth mentioning regarding the measure-
ment of suspension frequency responses. First of all, the result of the modeling is only
going to be as good as the measurement data. Therefore, it is important to ensure that
the full spectrum of the frequency response data is valid. The frequency response data of

3Technically, it shouldn’t be a transfer function plot. Instead, it should be called either frequency
response or Bode plot.

4Obtaining a frequency response is actually easier than obtaining a Fourier transform series using
these utilities.
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a suspension can only be measured using real sensors and when the particular degree of
freedom is not under any influence of feedback control. Under this condition, the displace-
ment measurement of the suspension sensors contain sensor noise. And, the displacement
is not only excited by the injected actuation but also static external disturbance such as
the seismic noise. Therefore, it is important that the injected actuation signal sufficient
excite the motion of the suspension such that the displacement due to actuation dominates
that of the disturbance and the noise. However, the actuation should not be excessively
high to a level where the displacement signal gets distorted due to non-linearity of the
sensor as discussed in Sec. 6.1.1. In such case, higher order harmonics, which do not
represents the dynamics of the system, will occur in the frequency response data. Hence,
getting the actuation magnitude (at all frequencies) adequate the crucial first step to
successful modeling of the plant.

Model selection

Assuming that the relationship between the actuation signal u and the displacement y is
governed by a generic linear differential equation

a0y + a1
dy

dt
+ a2

d2y

dt2
+ · · ·+ an

dny

dtn
= b0u+ b1

du

dt
+ b2

d2u

dt2
+ · · ·+ bm

dmu

dtm
, (6.63)

where ai and bi are real coefficients. Taking the Laplace transform if the governing
equation gives a transfer function, defined by the ratio of the output and the input,

(
a0 + a1s+ a2s

2 + · · ·+ ans
n
)
Y (s) =

(
b0 + b1s+ b2s

2 + · · ·+ bms
m
)
U(s)

Y (s)

U(s)
=
b0 + b1s+ b2s

2 + · · ·+ bms
m

a0 + a1s+ a2s2 + · · ·+ ansn
,

(6.64)

where s is the Laplace variable, Y (s) and U(s) are the Laplace transform of the output y
and the actuation signal u, respectively. A generic transfer function model corresponding
the physical dynamical system can then be written as

P̂ (s) =
b0 + b1s+ b2s

2 + · · ·+ bms
m

a0 + a1s+ a2s2 + · · ·+ ansn
, (6.65)

and ai and bi are the model parameters that we seek to obtain via modeling and fitting.
However, the modeling and fitting of the frequency response data can be difficult with a
transfer function model in this form. This is due to two reasons:

1. n and m are integers that cannot be obtained via typically fitting methods such as
linear regression, and

2. Fitting ai and bi lacks numerical stability as the poles of the transfer function model
approaches the right-hand side of the complex plane during process of fitting.
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Both issues can be avoided by recently developed algorithms such as the adaptive Antoulas-
Anderson (AAA) and AAA2 algorithms [51, 52].

However, the modeling of mechanical transfer functions of a multiple-pendulum sus-
pension is a simpler task than fitting a generic transfer function. This is because the
transfer function model of a multiple-pendulum, which is a coupled oscillator, can be
simplified to

P̂ (s) = k

∏nz

z=1 s
2 +

ω′
n,i

q′i
s+ ω′2

n,i∏np

p=1 s
2 +

ωn,i

qi
s+ ω2

n,i

, (6.66)

where k ∈ (−∞,∞), ωn,i ∈ (0,∞), ω′
n,i ∈ (0,∞), qi ∈ [0.5,∞), and q′i ∈ [0.5,∞) are

the model parameters to be found. Note that here np and nz are redefined to be the
number of complex-pole pairs and the number of complex-zero pairs, respectively. The
element (s2 + ω′

n,is/q
′
i + ω′2

n,i) corresponds to a pair of complex zeros located at frequency
ω = ω′

n,i and the element 1/(s2+ωn,is/qi+ω
2
n,i) denotes a pair of complex poles located at

frequency ω = ωn,i. From hereafter, a pair of complex poles or complex zeros is referred to
a complex pole or a complex zero5. In the frequency response, a complex zero corresponds
to a notch / antiresonance in the magnitude plot around ω = ω′

n,i while a complex pole
corresponds to a peak / resonance around ω = ωn,i. This means that the numbers np and
nz can be determined from the frequency response measurements, given that the peaks
and notches are observable. This solves issue 1.

The stability of the transfer function is determined by the real numbers of the complex
poles. The complex poles polynomial can be factorized as

1

s2 +
ωn,i

qi
s+ ω2

n,i

=
1

(s− sp)
(
s− s∗p

) , (6.67)

where
sp =

ωn,i

2qi

(
−1 + j

√
4q2i − 1

)
(6.68)

is one of the complex poles, s∗p denotes its complex conjugate, which is the other complex
pole, and j is the imaginary number. It is obvious that when 0 < ωn,i <∞ and 0.5 ≤ qi <

∞, the real part of sp is −ωn,i/(2qi), which is always less that zero. Under these constrains,
the fitting problem is numerically stable and this solves issue 2, making Eqn. (6.66) a
suitable model for fitting the frequency response of a suspension. There are several ways to
impose these constrains. For example, the fit can be done via a constrained optimization.
Alternatively, instead of using k, ωn,i, ω′

n,i, qi, and q′i as the model parameters, use log k,
logωn,i, logω′

n,i, log(qi − 0.5) and log(q′i − 0.5) instead. This not only ensures that the
numerical stability constrains are imposed, but also scale the parameters proper taking
into account the large dynamic range of the frequency response, which is typically plotted
with log-log graph. This may improve the results obtained from numerical optimization.

5For a physical system, complex zeros or complex poles must come in pairs.
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Therefore, the latter approach is the preferred way.

Fitting frequency response data

Once a transfer function model is selected, the final fitting problem can be defined as an
optimization problem seeking a minimization:

min
θ

(
1

N

N∑

i=1

(
log
∣∣∣P̂ (jωi; θ)− P (jωi)

∣∣∣
2
)
W (ωi)

)
, (6.69)

where, ωi is the discrete frequency data of the measurement, P̂ (jωi; θ) is the transfer
function model, θ is the array of model parameters that need to be optimized, P (jωi)

is the measured frequency response given by Eqn. 6.62, and W (ωi) is a weighting func-
tion. Similar to geophone calibration described in Sec. 6.1.2, the weighting function is a
frequency-dependent function that can be used to weight or filter out wanted data points.
The plant model for fitting the frequency response of a suspension is given by Eqn. 6.66.
But, it is more convenient to rewrite Eqn. 6.66 in terms of normalized frequency:

P̂ (s) = kDC

∏nz

z=1

(
s

ω′
n,i

)2
+ 1

q′i

s
ω′
n,i

+ 1

∏np

p=1

(
s

ωn,i

)2
+ 1

qi

s
ωn,i

+ 1
, (6.70)

where kDC denotes the DC gain of the transfer function. This gives the model parameter
array θ = {kDC, ωn,i, ω

′
n,i, qi, q

′
i}, which has a length of 2(np + nz) + 1, where np is the

number of pairs of complex poles, and nz is that for the complex zeros. Again, it should
be reminded that the optimization works best when by optimizing the logarithm of the
model parameters, not the parameters themselves.

The optimization problem (6.69) can be solved in two ways,

1. Using a local optimization algorithm, such as the Nelder-Mead method, with an
initial guess, or

2. Using a global optimization algorithm, such as differential evolution, with bounded
model parameters.

For the global optimization option, the boundaries of the model parameters for model
(6.70) can be obtained as follows. The DC gain kDC refers the the magnitude of the
frequency response at 0 Hz. While the frequency response of a couple-oscillator is flat
below the resonance frequencies, the boundary of kDC can be set to a close range around
the the magnitude of the measure frequency response at the lowest frequency |P (jω1)|.
For example, one can set the boundary to one order of magnitude around the magnitude
response at the lowest frequency, i.e. [0.1|P (jω1)|, 10|P (jω1)|]. Note that here the as-
sumption is that the measured frequency response adequately captures the low frequency
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response of the suspension. As for the resonance frequencies ωn,i and ω′
n,i, the bound-

ary can be safely set to the domain of the frequency response, i.e. [min(ωi),max(ωi)].
This reasoning is that the number of pole pairs and zero pairs of the model, np and nz,
are chosen based on the observed resonances and antiresonances in the Bode plot. This
means the resonance frequencies ωn,i and ω′

n,i must fall within the frequency domain of
the measurement. Lastly, for the quality factors qi and q′i, the lower bound of the is set
to at least 0.5 to maintain the numerical stability. However, the upper bound cannot be
obtained easily because it depends on the height/depth of the resonance peaks/notches.
For a single oscillator, the quality factor is approximately equal to the peak amplifica-
tion from the static gain. In practice, the quality factors of mechanical resonances in a
suspension are found to be below the order of 10−3. Therefore, [0.5, 1000] is a reasonable
initial boundary for the quality factors. The boundaries can always be adjusted when the
optimization yields sub-optimal results.

With the boundaries set, the transfer function fitting problem can be solved using a
global optimization method such as differential evolution. However, in practice, using
global optimization is often a trial-and-error process as the optimization traps in a local
minima. This result is that only part of the transfer function is well-modeled. In this
case, the optimization needs to be restarted with a different random number generator
seed so there is a chance that it gives a better results. But, there is no guarantee that the
optimization can yield a satisfactory fit so it could cost a lot of trials to obtain one fit.
Therefore, global optimization may not be the best way to solve this problem. Instead,
local optimization is used more often in practice and it yields satisfactory results quicker
with a user-informed initial guess.

To use local optimization, one need to initialize the model parameters so the algorithm
can start a local search. In the context of transfer function fitting, this corresponds to
a manual fit of the frequency response, which is a already typical practice at KAGRA.
Although this is also a trial-and-error process, it is straightforward as the parameters can
easily be guessed via a quick visual inspection or even algorithmically obtained. The model
parameters that needed to be initialized are the static gain kDC, the resonance frequencies
ωn,i and ω′

n,i and the quality factors qi and q′i. First of all, as discussed previously, the
static gain kDC corresponds to the magnitude response at 0Hz. If the measured magnitude
response shows a plateau at low frequency, the magnitude of the plateau, or simply the
magnitude at the lowest frequency, can be used as an initial estimation of kDC. Then,
one resonance frequency and one quality factor constitute a complex pole / zero and they
must be guessed in pairs. Estimating all the resonance frequency and quality factor of a
complex pole / zero is a straightforward iterative process as described by Algorithm 2.

As stated in Algorithm 2, the transfer function model P̂ (s) is initialized with the static
gain kDC, which is obtained previously. In order to obtain the resonance frequencies and
the quality factors, the first step is to scan the magnitude response, from low frequency
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Algorithm 2 Estimating resonance frequencies and Q factors from a frequency response
ωi ← {ω1, ω2, . . . , ωN} ▷ The frequency data points.
P (jω)← {P (jω1), P (jω2), . . . , P (jωN)} ▷ The frequency response data complex
series.
kDC ← |P (jω1)| ▷ The static gain.
np ← Number of peaks in |P (jω)| ▷ Estimate the number of resonances.
nz ← Number of notches in |P (jω)| ▷ Estimate the number of antiresonances.
P̂ (s)← kDC ▷ Initialize a transfer function model.
ωn,i ← {} ▷ List of resonance frequencies.
ω′
n,i ← {} ▷ List of antiresonance frequencies.
qi ← {} ▷ List of resonance quality factors.
q′i ← {} ▷ List of antiresonance quality factors.

for i = 1, i ≤ N, i++ do ▷ Scan from low to high frequency
if |P (jωi)| is a peak then ▷ A peak is found.

ωn ← ωi

Guess q. ▷ Guess a quality factor for this resonance.
Plot P (jω) and P̂ (jω)× ω2

n

(jω)2+ωn(jω)/q+ω2
n

▷ Inspect the Bode plots.
if Peak height matches then

Add ωn and q to the lists ωn,i and qi.
P̂ (jω)← P̂ (jω)× ω2

n

(jω)2+ωn(jω)/q+ω2
n

▷ Multiply the model with the poles.
else ▷ Inspection not satisfied.

Increase or decrease q and repeat inspection.
end if

else if |P (jωj)| is a notch then ▷ A notch is found instead.
ωn ← ωi

Guess q. ▷ Guess a quality factor for this antiresonance.
Plot P (jω) and P̂ (jω)× (jω)2+ωn(jω)/q+ω2

n

ω2
n

▷ Inspect the Bode plots.
if Notch depth matches then

Add ωn and q to the lists ω′
n,i and q′i.

P̂ (jω)← P̂ (jω)× (jω)2+ωn(jω)/q+ω2
n

ω2
n

▷ Multiply the model with the zeros.
else ▷ Inspection not satisfied.

Increase or decrease q and repeat inspection.
end if

end if
end for

to high frequency, for either a peak or a notch. If a peak is found, then one needs to
guess a quality factor q. After that, the measured frequency response P (jω) is plotted
together with P̂ (jω)×ω2

n/[(jω)
2+ωn(jω)/q+ω

2
n] and compare, where ωn is the frequency

at which the peak was found. If the peak heights match, then the model is changed to
P̂ (jω)× ω2

n/[(jω)
2 + ωn(jω)/q + ω2

n] and the resonance frequency and quality factor are
marked as two of the initial parameters. Otherwise, adjust the quality factor q and
try again. Similarly, the same procedure can be be done for a notch. But instead of
P̂ (jω) × ω2

n/[(jω)
2 + ωn(jω)/q + ω2

n], P̂ (jω) × [(jω)2 + ωn(jω)/q + ω2
n]/ω

2
n is instead
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compared with the measured response. The process repeats until all peaks and notches,
i.e. the whole frequency response, are coarsely modeled. This gives all initial parameters
for kDC, ωn,i, ω′

n,i, qi, and q′i.
Now, Algorithm 2 assumes that the multiplying a pair of complex pole or a pair of

complex zero at higher frequency will not change the height or depth of a peak or notch
at lower frequency. This holds true only when the frequency of the pair of complex poles
/ zeros is sufficiently high compared to the frequency of the peak or the notch. When
there are multiple peaks and notches localized in a small frequency range, they cannot be
individually treated as in Algorithm 2. Instead, one needs to go back and forth to adjust
the quality factors to match the shape of the cluster of peaks and notches.

SRM F1 GAS filter frequency response

To exemplify the methods described above, the modeling of frequency response of the
SRM F1 GAS filter is given in this section.
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SRM F1 GAS filter magnitude response
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Figure 6.19: The magnitude response of the SRM F1 GAS filter.

The magnitude of the frequency response of the SRM F1 GAS filter degree of free-
dom is shown in Fig. 6.19. First of all, it should be noted that the frequency response is
inaccurately presented at frequencies above ∼ 4Hz. The notch at 60Hz corresponds to
a notch filter at the input filter, which is used to filter out the 60Hz coupling from the
mains electricity. The magnituide response with ∼ f 2 frequency dependency at above
∼ 10Hz is not part of the mechanical frequency response, which should be have a fre-
quency dependency of ∼ f−2, either. Instead, it is due to magnetic coupling between
the coil-magnet actuator and the LVDT coils reading the displacement of the GAS filter.
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The notch at 8Hz is a result of the ∼ f 2 magnetic coupling being added to the ∼ f−2

mechanical response so it should be ignored also. In order to neglect these artifacts, the
weighting function W (ω) is used to mask the data. In this case, the weighting function
is set to 0 above 3Hz and is set to 1 below that.

The corresponding transfer function model is given by Eqn. (6.70) as discussed. Judg-
ing from the number of peaks and notches, ignore those above 3Hz, the number of
complex-pole pairs is np = 3, and that of complex-zero pairs is nz = 2. This means
there are 11 model parameters (1 DC gain, 5 resonance frequencies, and 5 quality fac-
tors) to be fitted. Following Algorithm 2, all parameters are identified in 5 iterations,
each corresponding to an identification of a pair of complex pole or a complex zero. The
initial parameter values identified are shown in the second column in Table 6.2 and the
model corresponding to iteration 1, 3, and 5 are shown in Fig. 6.20. In this example,
the identification was done via visual comparison between the magnitude response of the
model and the measured data. Here, the model does not need to fit perfectly with the
data because of the optimization step that comes after this.

Parameter Initial guess Locally optimized Globally optimized
kDC 3.955× 10−2 3.761× 10−2 3.761× 10−2

ωn,1 0.27× 2π 0.2771× 2π 0.2771× 2π
ωn,2 0.6× 2π 0.5959× 2π 0.5959× 2π
ωn,3 1.1× 2π 1.078× 2π 1.078× 2π
ω′
n,1 0.4× 2π 0.4111× 2π 0.4111× 2π

ω′
n,2 0.7× 2π 0.7098× 2π 0.7098× 2π

q1 20 24.85 24.83
q2 10 17.36 17.38
q3 10 7.428 7.426
q′1 20 23.36 23.10
q′2 50 9.742 9.755

Table 6.2: Model parameters indentified for modeling SRM F1 GAS frequency response.

With the initial parameters obtained, the transfer function model can be obtained
using a local optimization method. In this case, the model was fitted using
scipy.optimize.minimize(fun, x0, method="Nelder-Mead",

options={"adaptive:True, maxiter=len(x0)*1000"}) in Python, where fun is the
cost function and x0 is the initial parameters. Note that the it is the logarithm of the
parameters in Table 6.2 being optimized, not the model parameters themselves. The
optimization was terminated after 1771 iterations, with a final cost function of -0.1725.
In comparison, the cost function is evaluated to -0.1492 with the initial guess. The
result is shown in Fig. 6.21 and the fitted parameters are shown in the third column of
Table 6.2. As can be seen, the optimized model fits well to the frequency response and is
an improvement of the initial fit.
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Figure 6.20: Iterations 1 (orange dashed), 3 (green dash-dot), 5 (red dotted) of model
parameter initialization for the SRM F1 GAS filter frequency response.

As a comparison, the global optimization method was also used to perform the fitting
and the results are shown in Fig. 6.22. The global optimized was performed multiple times
using different random seeds. The boundary of the for the global optimization was set
using the aforementioned criteria. And, the optimization was achieved in Python using
scipy.optimize.differential_evoluion(func, bounds, workers=-1,

updating="deferred"), where func is the cost function and bounds specifies the bound-
ary of the parameters. As shown in Fig. 6.22, the fit was only successful when the random
number seed equals to 4 and this illustrates the aforementioned discussions about using
a global method where the fit is done partially. The cost function evaluates to -0.1593,
-0.1603, and -0.1725 for seed equals to 2, 3, and 4, respectively. For the successful case,
the evaluated cost function is practically identical to that of the local optimization. The
optimized parameters are shown in the forth column in Table 6.2. As can be seen, the pa-
rameters are practically identical to that of the locally optimized ones (with 4 significant
figures.).

6.3.2 Frequency spectrum modeling

The modeling of frequency spectrum can be straightforwardly done by minimizing a cost
function:

min
θ

(
1

N

N∑

i=1

[
log Ŝ(fi; θ)− logS(fi)

]2
W (fi)

)
, (6.71)
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Figure 6.21: SRM F1 GAS filter frequency response modeling using local optimization.
Blue: Measured frequency response. Orange dashed: Initial guess for the local optimiza-
tion. Green dash-dot: Transfer function model fitted using local optimization.

where S(fi) is the measured frequency spectrum, fi is the frequency data points, N is
the number of data points, Ŝ(fi; θ) is the model of the frequency spectrum, θ is the array
of model parameters, and W (fi) is the weighting function. In this case, the plant model
and the frequency response are replaced with an empirical model of the spectrum and the
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Figure 6.22: SRM F1 GAS filter frequency response modeling using global optimization.
Blue: Measured frequency response. Orange dashed: Model fitted using global optimiza-
tion with random seed = 2. Green dash-dot: Model fitted using global optimization with
random seed = 3. Red dotted: Model fitted using global optimization with random seed
= 4.

measured spectrum, respectively. An example of an empirical model is something like

Ŝ(f ; a, b,Na, Nb) =

[(
Na

fa

)2

+

(
Nb

f b

)2
] 1

2

, (6.72)

where a, b, Na, and Nb are the model parameters. An empirical model in this form
corresponds to a quadrature sum of two straight line spectrum with two frequency depen-
dencies a and b. It is very useful for describing the amplitude spectral density (ASD) of
sensor noises such as the geophone noise and the LVDT noise.

In some applications, it is useful to model the amplitude spectral density of a signal
with the magnitude response of a transfer function. This corresponds to modeling the
signal as an output of a system that has a white noise input with unity amplitude spectral
density. This is particularly useful in applications such as H∞ optimization, which is to
be discussed in Part III. In this case, the modeling is not as straightforward as modeling
the frequency response of the suspensions since a transfer function model cannot be well
defined. This is because the frequency dependency of the ASD of a signal can have
fractional order, such as 1/f 0.5, whereas a transfer function model only has integer order,
which corresponds to the number of poles and zeros. It is possible to represent a fractional
order system with a higher integer order transfer function. However, this only works within
a certain frequency range.
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Moreover, even if the required order of the transfer function known, it is still difficult
to define a transfer function model. Recall, from Eqn. (6.65), that a generic transfer
function model can be defined as

P̂ (s) =
b0 + b1s+ b2s

2 + · · ·+ bms
m

a0 + a1s+ a2s2 + · · ·+ ansn
, (6.73)

where n and m denote the order of the denominator and numerator polynomials, respec-
tively. Again, directly using this as the model for fitting is an ill-conditioned optimization
as it gets numerically unstable. Assuming that numerical stability is not an issue, there
are still other problems: 1) Using the model for a local optimization directly requires a
good initial guess, which is difficult to obtain, and 2) using the model for a global op-
timization can be difficult as the boundaries of the coefficients ai and bi cannot be well
defined. The model can be factorized into

P̂ (s) = k

∏nsz

i=1 s− zi∏nsp

i=1 s− pi

∏ncz

i=1 s
2 +

ω′
n,i

q′i
s+ ω′2

n,i∏ncp

i=1 s
2 +

ωn,i

qi
s+ ω2

n,i

, (6.74)

where zi and pi are the simple zeros and simple poles, ωn,i, ω′
n,i, qi, and q′i are the resonance

frequencies and quality factors of the resonances and the antiresonances as described
previously, and nsz, nsp, ncz, and ncp are the number of simple zeros, simple poles, pairs
of complex zeros, and pairs of complex poles, respectively. From this model, it is obvious
that nsz+2ncz = m and nsp+2ncp = n but there are no more information that can further
be used to deduce the individual number of simple zeros and poles and the number of
complex zeros and poles. This makes model selection difficult for spectrum modeling.

To make frequency spectrum modeling work, a 2-step method is proposed. The first
step is to use a zero-pole-gain (ZPK) model to coarsely model the frequency spectrum.
The ZPK model is defined as

P̂ZPK(s; zi, pi, k) = k

∏nsz

i=1 s− zi∏nsp

i=1 s− pi
. (6.75)

A model in this form can be used to fit the frequency spectrum using a global optimization
algorithm. This is because the required order of the transfer function model can be used
to set nsz and nsp directly so the model becomes defined. The values of zi and pi are
also supposedly bounded within the frequency range of the measurement, or a known
frequency band of interest. This makes global optimization possible. However, the ZPK
model is not a generic from of a transfer function so modeling the frequency spectrum with
a ZPK model is only an intermediate step. The second step is to convert the ZPK model
into a polynomial form, using the globally optimized values of simple zeros and poles.
This gives initial values of ai and bi for the generic transfer function model in Eqn. (6.73),
which can then be proceeded for a local optimization. The local optimization should be
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numerically stable as the ZPK model should provide a sufficiently good fit close to a local
minimum.

As mentioned previously, the modeling of a fractional-order frequency spectrum using
a transfer function model only works at within a frequency band of interest. This means
the frequency spectrum at outside the frequency band is not modeled. This fact can be
used to simplify the modeling problem if the magnitude response of the transfer function
model is allowed to be flat outside the frequency band of interest. In this case, the numbers
of simple zeros and simple poles selected are equal, i.e. nsz = nsp, during the intermediate
step. The selection of this number is not obvious. In principle, a higher order transfer
function could mean a better fit of the frequency spectrum. But, in practice, this usually
gives zero-pole cancellation pairs outside the frequency band of interests, indicating that
the numbers of zeros and poles are in excess. As a general rule of thumb, the number
can be initiated by the minimum integer that is higher than the fractional order of the
frequency spectrum. For example, if the frequency spectrum has a f−3.5, then the order
is initially chosen to be 4. The order can be increased when the fit is not satisfactory, or
it can be decreased when zero-pole cancellation starts to occur.

It is also worth mentioning that the transfer function model obtained using local
optimization might represent a non-minimum phase system. This means that the transfer
function model is stable but its inverse is not, i.e. it has at least one zero with positive
real part. In applications where the inverse of the model needs to be invoked, the model
must be converted to a minimum phase one. This can be achieved by simply negating
the positive real parts of the zeros. This will not change the magnitude response of the
transfer function model. Only the phase response is changed, which is not important for
modeling a frequency spectrum.

SRM IP longitudinal geophone noise spectrum modeling

To illustrate the frequency spectrum modeling method, an example showing the modeling
of a geophone noise spectrum is shown below. Fig. 6.23 shows the SRM pre-isolator
geophone noise spectrum (Blue solid) in the longitudinal direction. The with the empirical
model (Orange dashed), ZPK model (Green dash-dot), and the transfer function model
(Red dotted) for this spectrum is also shown. The three geophones at the pre-isolator
stage circles around the pre-isolator in a way like the LVDTs as described in Sec. 6.2.1.
The effective longitudinal noise spectrum is obtained by multiplying the geophone spectra
in the sensor basis by the corresponding longitudinal row elements of the sensing matrix.
Then, the they are quadrature summed to obtain one spectrum corresponding to the noise
spectrum in the longitudinal direction.

In Fig. 6.23, three models are used to fit the measured noise spectrum, including the
empirical model (6.72), the ZPK model (6.75), and the transfer function model (6.73).
In all cases, the models are obtained by minimizing the cost function in Eqn. (6.71).
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Figure 6.23: Geophone noise spectrum. Blue solid: Measured noise spectrum. Orange
dashed: Empirical model. Green dash-dot: ZPK model. Red dotted: Transfer function
model.

For the ZPK model and transfer function mode, only the magnitude response is used,
instead of the complex-valued frequency series. The weighting function is chosen to be
1 at f < 0.1 and f > 1, and is 0 between 0.1 < f < 1 due to the observable residual
resonances of the suspension. The empirical model is obtained using a local optimization
algorithm same as that used in Sec. 6.3.1. The initial parameters are chosen to be θ =

{a, b,Na, Nb} = {10−5.46, 10−5.23, 3.5, 1}. These values were obtained using a graphical
method (i.e. calipers) on the typical geophone intrinsic noise shown in Ref. [29]. And,
the optimized empirical model is shown as orange dashed curve in Fig. 6.23.

The ZPK model and the transfer function model are obtained by fitting the frequency
responses of the models to the optimized empirical model, not the measured data. The
benefit of obtaining an empirical model beforehand is that it enables further fitting with
log-spaced frequency data, which helps normalizing the significance of data point at dif-
ferent frequencies. It also filters out unwanted data in the measured spectrum. The ZPK
model is obtained first and corresponding model is a ZPK model with 4 simple zeros and
4 simple poles. The order 4 is chosen based on the fact that the geophone noise has a fre-
qeuncy dependency of ∼ f−3.5 at low frequencies. The optimized ZPK model is obtained
straightforward with a global optimization algorithm same as that used in Sec. 6.3.1. The
magnitude response of the ZPK model is plotted in green dash-dot in Fig. 6.23. As can be
seen, it follows the trend of the empirical model well but it fluctuates around the empirical
model.

The optimized ZPK model is used as the initial guess of the local optimization for fit-
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ting the transfer function model. Because the ZPK model is already close to the empirical
fit, the local optimization using a transfer function model did not result in an unstable
numerical optimization. The frequency response of the transfer function model obtained
using local optimization is shown as red dotted line in Fig. 6.23. It overlaps with the
empirical model almost perfectly and is a much better fit compared to the ZPK model.

6.4 Coarse alignment and local damping control

To begin the section, it is worth recalling the control block diagram of one single degree
of freedom as shown in Fig. 5.5. In this section, the design of the controller K(s) is
discussed. In particular, the discussion for damping control and coarse alignment con-
trol is provided. The controller discussed in this section serves the purpose for initially
controlling and aligning the interferometer. It stabilizes the displacement of the optics
and it roughly aligns the optics, putting the interferometer into the operating point so
interferometer control can be further engaged. These controllers are required to be simple
and robust. The design of the controllers does not take into account the sensing noise.
Therefore, the controller discussed here is not guaranteed to be valid for the observation
mode where noise performance at higher frequency becomes crucial. With that said, the
noise performance is largely determined by the sensing noise, as the open-loop gain is
typically low at observation band. Therefore, the controls at degrees of freedom at lower
stages are usually disengaged during observation since the control noise are less attenuated
passively by the pendulums.

The design of the controller is typically done manually by experts by shaping the open-
loop frequency response. They do so by putting required control bandwidth above unity
gain and making sure that the system is stable according to simple stability criteria. This
is usually done according to personal experience and it leads to inconsistency across dif-
ferent systems. For instance, one may require a stability phase margin of 30◦ while others
may require 45◦. Moreover, this way of designing of the controller lacks reproducibility as
the ideology is based on personal experience and is not quantified. The controllers should
not be copied over other systems as there are subtle differences, e.g. slightly different
resonance frequencies that might prevent that. To solve the issues above, this section
seeks to provide an algorithmic way to shape the feedback controllers according to the
modeled plant of the suspension.

There are three types of filters discussed in this section. Sec. 6.4.1 discusses the
design of a derivative controller for critically damping the resonances of the suspension.
Sec. 6.4.2 discusses an augmentation to the damping controller for position control. And,
Sec. 6.4.3 discusses additional post-filter techniques that can help attenuating unwanted
high frequency noise and improving stability.
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6.4.1 Damping control

For simplicity, consider a single pendulum shown in Fig. 5.4. The transfer function from
the actuation on the pendulum to the displacement of the pendulum has the form

P (s) = kDC
ω2
n

s2 + ωn

q
s+ ω2

n

, (6.76)

where kDC is the static actuation efficiency, ωn is the resonance frequency, and q is the
quality factor. Now, suppose the disturbance D(s) is the perturbation of the displacement
X(s) due to the motion of the platformXplatform(s) where the pendulum is suspended from.
The disturbance reads

D(s) =

ωn

q
s+ ω2

n

s2 + ωn

q
s+ ω2

n

Xplatform(s) , (6.77)

whereXplatform(s) is the platform displacement. Neglecting sensing noise, the displacement
of the pendulum under feedback control reads

X(s) =
1

1 +K(s)P (s)
D(s)

=
1

1 +K(s)k ω2
n

s2+ωn
q
s+ω2

n

ωn

q
s+ ω2

n

s2 + ωn

q
s+ ω2

n

Xplatform(s)

=

ωn

q
s+ ω2

n

s2 + ωn

q
s+ ω2

n +K(s)kω2
n

Xplatform(s) ,

(6.78)

where the expression in the first line is given by Eqn. (5.4), and in the second line, P (s)
and D(s) are substituted by Eqn. (6.76) and Eqn. (6.77), respectively. It is obvious that
when K(s) = 0, the denominator is composed of a pair of complex poles, which represents
the resonance of the pendulum. The magnitude response has a peak around ω = ωn. This
amplifies the motion of the platform Xplatform(s) and is obviously not desirable.

Simply judging from Eqn. (6.78), it is obvious that when K(s) is large, i.e. K(s) →
∞, the pendulum displacement X(s) gets decoupled from the motion of the platform.
However, this is not feasible due to two reasons: 1) The displacement will be dominated
by sensing noise in reality, and 2) The actuation signals may get saturated, which is
something that needs to be avoided as it causes actuation coupling to other degrees of
freedom or even causing large oscillations. A compromise is to set K(s) such that the
dynamics of the system contains no resonance, hence no oscillation and not amplifying
any external disturbance. Although this does not guarantee that the actuation signals
will not be saturated, it provides a baseline for setting the controller that can be tuned
in practice.

To achieve a closed-loop system with no oscillation, the controller K(s) needs to
lower the qualify factor in the closed-loop condition. The inverse of the quality factor
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is a coupling constant to the Laplace variable s in the denominator. This requires the
controller to at least contain a factor proportional to the Laplace variable s. And, without
changing the resonance frequency of the system, the controller is exactly proportional to
s, giving

K(s) = kds , (6.79)

where kd is the derivative gain. The system is said to be critically damped when the
quality factor is 0.56. This is because a quality factor of 0.5 corresponds to a system with
a transfer function 1/(s2 + 2ωns + ω2

n), which has exactly two simple poles at s = −ωn,
corresponding to two exponential decays with no oscillation. To achieve this, it is easy to
see from Eqn. (6.78) that when

ωn

q
+ kdkDCω

2
n = 2ωn , (6.80)

the system is critically damped. This gives the critical derivative gain

kd =
2
(
1− 1

q

)

kDCωn

. (6.81)

For degrees of freedom with only one resonance, the critical damping controller (6.79)
can be straightforwardly implemented by substituting the derivative gain by Eqn. (6.81).
The parameters kDC, ωn, and q in Eqn. (6.81) are exactly those obtained from system
identification as discussed in Sec. 6.3.1.

However, most degrees of freedom in a suspension have more than one resonance, recall
that the suspension is a multiple-pendulum. For these systems, the critical derivative gain
cannot be easily derived analytically. Instead, a numerical approach is used to obtain the
critical derivative gain. In this case, the critical derivative gain is defined such that one
of the closed-loop complex-pole pairs turn into a pair of simple poles. To visualize this,
consider a root locus plot as shown in Fig. 6.24. The root locus plot shows the locations
of of the poles of a closed-loop system as a parameter vary. In this example, the SRM F1
GAS filter transfer function identified in Sec. 6.3.1 is used as the plant P (s) and the the
parameter is the derivative gain kd. In Fig. 6.24, the cross markers represent the poles of
the open-loop transfer function K(s)P (s) and the circle markers represents its zeros. At
kd = 0, the closed-loop poles are the open-loop poles. As kd increases, the each closed-loop
poles follow one of the root locus (branch) and travel towards the open-loop zeros. As
kd →∞, the closed-loop poles end at the open-loop zeros. As shown in Fig. 6.24, the first
branch (blue) and the second branch (orange), corresponding a pair of poles, meet on the
real axis between -6 and -4. The point where they meet corresponds to a break-in point

6A quality factor of
√
2/2 is also a reasonable choice. This gives frequency response containing no

local maximum at the resonance frequency. Therefore, anywhere between 0.5 and
√
2/2 satisfies the no

amplification requirement.
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Figure 6.24: Root locus plot for SRM F1 GAS filter derivative control. Solid lines: root
loci of the closed-loop poles. Crosses: Open-loop poles corresponding to the starting
points of the root loci. Circles: Open-loop zeros corresponding to the end points of the
root loci.

and is where the two complex-pole pairs turn into two simple poles, and there will be no
oscillation correspond to this mode. This is where the kd should be set for a critically
damped system. The other poles, however, never meet on the real axis and go toward
the closest complex zeros directly. This is typical for systems in a suspension, which have
transfer functions with a relative order of two, i.e. there are two more poles than zeros.

The root locus analysis showed that one pair of complex poles can be turned into a
pair of simple poles, indicating a critically damped condition. However, it is not obvious
from the plot that what derivative gain kd should be set. And even if there is, the critical
derivative gain is only good to an accuracy of the grid size of the gain used to plot the
root locus. Instead, a numerical approach is proposed to obtain the critical damping gain,
as shown in Algorithm 3. In the algorithm, the lower limit kd and upper limit k̄d of the
derivative gain is first obtained. And then, a bisection algorithm is used to tighten these
limits until a convergence condition is met.

The lower limit is defined by

kd =
1

max
ω
|jωP (jω)| . (6.82)

130 Optimizing Active Isolation Systems in Gravitational-Wave Detectors



6.4. COARSE ALIGNMENT AND LOCAL DAMPING CONTROL

Algorithm 3 Finding the critical derivative gain using a bisection algorithm.

P (s)← k

∏nz
i=1 s

2+
ω′
n,i

q′
i

s+ω′2
n,i∏np

i=1 s
2+

ωn,i
qi

s+ω2
n,i

▷ The identified plant.

kd ← 1
max
ω

|jωP (jω)| ▷ The lower limit of the derivative gain

K(s)← kds ▷ The controller.
C(s)← K(s)P (s)

1+K(s)P (s)
▷ The closed-loop transfer function.

ϵ← 0.1 ▷ A multiplicative increment. For example, 0.1.
k̄d ← kd ▷ The upper limit of the derivative gain, to be found.

Find the upper limit of the derivative gain:
while C(s) only has complex poles do

k̄d ← k̄d (1 + ϵ) ▷ Increment the derivative gain until it exceeds the critical
K(s)← k̄ds

C(s)← K(s)P (s)
1+K(s)P (s)

end while

Bisection algorithm for the critical damping gain:
tolerance← 10−6 ▷ An acceptable tolerance for termination. For example, 10−6.

while k̄d−kd
kd

> tolerance do

k′d ← 10
log k̄d+log kd

2 ▷ A trial gain the logarithmic mean of between the boundaries.
K(s)← k′ds

C(s)← K(s)P (s)
1+K(s)P (s)

if C(s) only has complex poles then ▷ Underdamped.
kd ← k′d ▷ Tighten the lower limit.

else ▷ Overdamped
k̄d ← k′d ▷ Tighten the upper limit.

end if
end while
kd ← k′d
return kd ▷ The critical derivative gain.

This lower limit is the lowest gain such that the open-loop gain |K(jω)P (jω)| is below
unity at all frequencies, which means there is no control bandwidth. The critical derivative
gain should be higher than this value so it is a reasonable way to set this lower limit. As
for the upper limit, it is found by an iteration. The upper limit k̄d is first set to the lower
limit kd. Then, in each step of the iteration, k̄d gets multiplied by a factor of (1+ϵ), where
ϵ is a small number and is set to 0.1 in Algorithm 3 as an example. The gain k̄d is used to
test the closed-loop transfer function to see if the gain is high enough such that the two
complex poles turned into two simple poles. The process repeats until this happens and
the upper limit k̄d is obtained.

Now, the critical derivative gain is known to fall in the interval (kd, k̄d). Therefore, a
numerical method like the bisection algorithm can be used to find the critical derivative
gain. Strictly speaking, the bisection algorithm is an algorithm for finding the root of
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a function that falls within a certain interval. However, it can be modified for find the
critical derivative gain as shown in the second while-loop in Algorithm 3. In each step
of the iteration, a trial derivative gain k′d is set to the logarithmic mean of between
(kd, k̄d). Practically, setting the trial to the half-way between the limits also works but
the logarithm is chosen based on the fact that Bode plots are typically plotted in log-
scale. The trial gain is then used to evaluate the closed-loop poles. If the closed-loop poles
still have complex values, then the lower limit kd is set to the trial gain and the process
repeats. Otherwise, the upper limit k̄d is set to the trial gain and the process repeats.
The iteration is terminated when (k̄d − kd)/kd is smaller than a user-defined tolerance,
i.e. when they become close enough.

SRM F1 GAS filter critical damping control

To illustrate, algorithm 3 was used to obtain the critical derivative gain for the SRM F1
GAS filter degree of freedom. The transfer function of the system is given by Eqn. (6.66)
and the identified parameters are those given in Table 6.2. Using algorithm 3, the critical
derivative gain was found to be 18.96 for the SRM F1 GAS filter degree of freedom.
As a comparison, using Eqn. (6.81) directly yields a derivative gain of 29.32, which is
slightly overdamping but is actually not a bad estimation of the critical derivative gain in
log-scale. The frequency response of the open-loop transfer function K(s)P (s) is shown
in Fig. 6.25. Here, the dominant resonance is the one at 0.2771Hz. As shown in the
figure, only the open-loop gain around the resonance is above the unity gain, indicating
the feedback action only exists around this frequency but not at other frequencies. Other
resonances are also put above the unity gain but this is purely coincidence. It is also
worth noting that the this system is unconditionally stable since the phase never go lower
than −180◦.

Fig. 6.26 shows a comparison between the magnitude response, i.e. the ratio between
the displacement and the actuation, of the open-loop system and the closed-loop system.
The frequency response of the closed-loop system is estimated by P (s)/(1 +K(s)P (s)).
As can be seen, the closed-loop magnitude response has no amplification above the DC
gain.

6.4.2 Coarse alignment control

The purpose of a position control system is to coarsely align optics such that the interfer-
ometer is sufficiently aligned. This brings the interferometer to an operating point where
control systems using the interferometer sensors can be engaged. Initially, the aligned posi-
tion of a suspension is found via a manual alignment. The positions are then recorded and
set as the setpoint R(s) of the control system as shown in Fig. 5.5. They are static position
at DC so the setpoints R(s) are typically a static value, i.e. DC. For the displacement
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Figure 6.25: Open-loop transfer function of the critical damping control for SRM F1 GAS
degree of freedom. (a): Magnitude. (b) Phase.

X(s) to reach the setpoint the least requirement is that as time t→∞, [R(s)−X(s)]→ 0.
Recall the coupling factor of R(s) in Eqn. (5.1), K(s)P (s)/(1 +K(s)P (s)), this gives

R(s)−X(s) = R(s)− K(s)P (s)

1 +K(s)P (s)
R(s)

=
1

1 +K(s)P (s)
R(s) .

(6.83)
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Note that the disturbance and noise terms in Eqn. (5.1) are ignored in this analysis.
According to the final value theorem, as t→∞, R(s)−X(s) approaches

lim
s→0

s[R(s)−X(s)] = lim
s→0

s
1

1 +K(s)P (s)
R(s) . (6.84)

Let R(s) to be a unit step function 1/s, then, position control requires

lim
s→0

1

1 +K(s)P (s)
= 0. (6.85)

For Eqn. (6.85) to be true, the open-loop transfer function K(s)P (s) must have at least
one pole at the origin, i.e. K(s)P (s) must contain a multiplicative factor of 1/s. While
P (s) is the transfer function of the suspension containing only complex zeros and complex
poles, position control can only be achieved by having a controller that is proportional to
1/s. This corresponds to using an integral controller

K(s) =
ki
s
, (6.86)

where ki is the integral gain.

To see how the integral gain affects the time response, consider the low frequency
region where the plant has a flat frequency response. At frequencies below the resonance
frequencies, the frequency response of the plant can be estimated as a constant, kDC. In
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this case, the displacement with integral control can be written as

X(s) =
ki
s
kDC

1 + ki
s
kDC

R(s)

=
kikDC

s+ kikDC

R(s) .

(6.87)

Again, letting R(s) to be a unit step function gives

X(s) =
kikDC

s+ kikDC

1

s

=
1

s
− 1

s+ kikDC

,

(6.88)

and taking the inverse Laplace transform gives

L{X(s)}−1 = 1− e−kikDCt . (6.89)

Fig. 6.27 shows the time response of this type of system. As can be seen, the displacement
is gradually brought to the setpoint following an exponential decay function with a time
constant τ . For coarse alignment control, it is desirable for the time constant τ to be as
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Figure 6.27: Time response of an integral control system.

low as possible. This is because the coarse alignment control is used for initial alignment
and re-alignment of the interferometer after lock-loss. All these alignment tasks take
time off the observation period and accomplishing fast alignment directly translates to
reduction of downtime and an improvement in duty cycle.
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Now, the suspension control integral control alone is not unconditionally stable, unlike
the derivative control. This is because the integral term 1/s introduces a phase of −90◦
to the open-loop transfer function. Combined with the −180◦ phase lag introduced by
the resonance of the suspension, it makes integral control possibly unstable for the sus-
pensions. Therefore, one must select the integral gain carefully to avoid instability. For
integral control to work alone as a position control system for suspensions, the gain has to
be low enough such that the peaks around the resonances in the magnitude response the
open-loop transfer function are lower than unity. However, this kind of design lacks effi-
cacy as it would imply the integral gain ki has to be so low, way lower than the resonance
frequency, and hence the time constant τ = 1/kikDC has to be so high. Alternatively, the
integral control can work with additional filters such as notch filters and low-pass filters,
which can help stabilizing the control. But, this design can be complicated as there are a
lot of design freedom.

Fortunately, the integral gain can work together with derivative control such that the
derivative action dominates at the resonance while the integral action dominates at low
frequency where the frequency response of the plant is flat. Here, a heuristic approach
for obtaining a reasonable integral gain is presented. First of all, the derivative gain kd

is selected according to Algorithm 3 in Sec. 6.4.1. After that, record the minimum unity
gain frequency ωugf,1 at |jωugf,1kd(jωugf,1)P (jωugf,1)| = 1. Now, an integral controller is
added in parallel to the derivative controller such that

K(s) =
ki
s
+ kds . (6.90)

Here, the idea is to have the derivative controller dominating the control bandwidth at
frequencies above ωufg,1 while the integral control dominates at lower frequencies. One
possible realization is to require

∣∣∣∣
ki

jωugf,1

kDC

∣∣∣∣ ≤ 1 . (6.91)

The line above assumes a plant with a flat plant at that has a magnitude response of kDC,
and sets the integral control unity gain frequency to lower than ωugf,1. Therefore, for the
fastest position control, the integral gain is set to

ki =
ωugf,1

kDC

, (6.92)

where, again, kDC is the DC gain of the plant as shown in Eqn. (6.70). The reason why
requirement as shown in Eqn. (6.91) implies that the derivative control dominates at
frequencies above ωugf,1 is due to the fact that the open-loop gain of the derivative control
is proportional to ω while that of the integral control is proportional to 1/ω. While
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the critical damping criterion requires the first unity gain frequency ωugf,1 to be lower
than the main resonance frequency, this ensures (for most suspension plants) that the
integral control dominates at frequencies below the resonances and the derivative control
dominates at frequencies higher than the resonances.

To further improve the transient response of the position control system, a proportional
gain can be added so the controller turns into a full proportional-integral-derivative (PID)
controller:

K(s) = kp +
ki
s
+ kds , (6.93)

where kp is the proportional gain, ki is the integral gain, and kd is the derivative gain.
Again, like the integral control, a similar requirement can be set for the proportional gain

|kpP (jωugf,1)| ≤ 1 . (6.94)

So for the fastest position control, the proportional control gain is

kp =
1

P (jωugf,1)
. (6.95)

With that said, the proportional gain is more flexible than the integral gain since pro-
portional control will not lead to instability but only reduce the phase margin, if there is
any. Again, all PID gains here are selected based on some heuristic criteria and can be
tuned, shall there be other design considerations. Also, the design presented here serves
as a baseline that is suitable for most plants in a suspension. Further improvements can
always be made on a case-by-case basis.

SRM F1 GAS filter coarse alignment control

The integral and proportional gains for the SRM F1 GAS filter degree of freedom were
obtained using Eqn. (6.92) and (6.95). Together with the derivative gain obtained in
Sec. 6.4.1, three types of control systems are presented here, including derivative control
(blue), integral and derivative control (orange dashed), and PID control (green dash-dot).
As shown in Table 6.3, the PID gains are 19.58, 27.45, and 18.96 for propotional control,
integral control, and derivative control respectively. Fig. 6.28 shows the corresponding

kp ki kd
19.58 27.45 18.96

Table 6.3: PID gains for the SRM F1 GAS filter control.

open-loop transfer functions K(s)P (s). First of all, from the phase plot (b), it can be
seen that the phase response of all open-loop transfer functions are well within ±180◦,
indicating all systems are stable. From the magnitude response, it can be seen that a
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Figure 6.28: Open-loop transfer function of the SRM F1 GAS filter control. (a): Mag-
nitude plot. (b): Phase plot. Blue: Derivative control. Orange dashed: Integral and
derivative control. Green dash-dot: PID control.

pure integral control with derivative control introduces a notch before first resonance.
This correspond to the complex zeros introduced by the controller ki/s+ kds, which has
a pair of complex zeros at ±j

√
ki/kd. This may be fine practically but it implies that

the system will not be able to control or suppress any disturbance at that frequency,
qualitatively speaking. This issue can be mitigated by the addition of the proportional
gain, which puts the open-loop gain at the notch above unity. At higher frequencies, the
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Figure 6.29: Simulated time response of the SRM F1 GAS filter control. Blue solid:
Derivative control. Orange dashed: Integral and derivative control. Green dash-dot: PID
control. Red dotted: No control.

open-loop gain is almost visually indistinguishable from that of the derivative control,
indicating a similar performance. At lower frequencies, the open-loop gain is dominated
by the integral control which has a signature 1/f frequency dependency.

Fig. 6.29 shows the simulated time response with all three controllers alongside the
time response with no control. Since there is no position control in the derivative control
and the open loop system, they cannot track the reference signal R(s). Instead, their
time response are generated by injecting a step actuation signal with a magnitude of
1/kDC, which is the corresponding actuation required to put the displacement at unity.
For Integral with derivative control and PID control, the time responses are generated
by injecting a unit step function to the setpoint R(s), i.e. commanding the system to
move the suspension by an amount of unity. This makes the time responses of the three
systems comparable.

As shown in Fig. 6.29, all systems have an equilibrium position at 1 µm. Compared
to the open loop (red dotted), all three controlled system settled around the equilibrium
quicker therefore they damped the resonances well. It might seem that the derivative
control has superior control performance in terms of rise time and settling time. But,
again, the position of the derivative control system is not regulated so these performances
are irrelevant. This, however, suggests an interesting control strategy for even faster
alignment control, where derivative control and an actuation offset are engaged prior
to the position control. For the integral + derivative control (orange dashed) and PID
control (green dash-dot), they yielded similar performance. A subtle difference is that
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the integral + derivative control has a slightly higher overshoot owing to the reduced
bandwidth. Nevertheless, they both controlled the position well and can be used for
coarse alignment control of the suspension.

6.4.3 Post-filtering

With a well-behaved system, the PID controller in the form of Eqn. (6.93) is typically
sufficient for coarse alignment and damping control. However, in most cases, additional
filtering is required not just for noise attenuation, but also for stability due to unmodeled
dynamics and outlier resonances. These abnormalities are treated with usually two types
of filters, low-pass filters and notch filters.

Low-pass filter

Fig. 6.28 and Fig. 6.29 shows the simulated SRM F1 GAS filter control system with the
modeled transfer function. No abnormalities were found in these simulations. It might
seem that the controllers are ready to be implemented. However, plotting the frequency
response of the open-loop transfer function of the PID controller using the measured
frequency response (as shown in Fig. 6.19) of the SRM F1 GAS filter degree of freedom
yields some interesting results. Fig. 6.30 shows the open-loop transfer function estimated
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Figure 6.30: SRM F1 GAS filter open-loop transfer function. Blue: Open-loop transfer
function estimated with measured frequency response. Orange: Open-loop transfer func-
tion with transfer function model.

with the measured frequency response (blue) and with the transfer function model. As
can be seen, the magnitude responses match very well below the last unity gain frequency
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at ∼ 2Hz. However, the magnitude responses above that starts to deviate from each
other and the one with measured frequency response started rising drastically above the
unity gain at above ∼ 10Hz. Again, the rising magnitude response is not the mechanical
response from the GAS filter. Rather, it is the magnetic coupling between the coil-magnet
actuators and the LVDT coils (hence it has perfect coherence). While this coupling may
not cause instability in theory, this configuration causes the the LVDT coils and actuation
signal to saturate, an effect basically indistinguishable from instability. Therefore, the
actuation to sensor coupling must be filtered such that the control bandwidth does not
extend to the frequency where actuation to sensor coupling dominates.

To achieve this filtering, the a low-pass filter can be added after the control. Or equiv-
alently, the feedback controller can be modified by multiplying the low-pass filter. Now,
there are many types of low-pass filters, such as the Chebyshev filter, the Butterworth
filter, and the Elliptic filter. For simplicity, the simple low-pass filter L(s)

L(s;ωc) =

(
ωc

s+ ωc

)nl

, (6.96)

where ωc is the cutoff angular frequency and nl is the order of the filter, is chosen for
further discussion in this section. But, the method discussed here are general for all types
of low-pass filter.

The order of the low-pass filter nl determines how fast the filter rolls off and the cutoff
frequency determines at what frequency does the filter begin to roll off. Fig. 6.31 shows
examples of low-pass filters up to an order of nl = 4. The selection of the order nl depends
on the purpose of the low-pass filter. For the SRM F1 GAS filter, the minimum order is
nl = 4. This is selected is based on the fact that the magnitude coupling introduces un-
wanted signal that is proportional to f 2 in the sensing readout. The mechanical response
of the GAS filter has an expected roll-off of f−2, which is that of a spring-mass system.
To retain this roll-off, this gives a relative order of 4, which leads to the selection nl = 4.

As for the cutoff frequency ωc, a choice of around the big notch at ∼ 8Hz seemed
reasonable as the magnetic coupling starts to dominate. However, the cutoff frequency
ωc cannot be selected arbitrarily. This is because the low-pass filter introduces negative
phase distortion, as shown in subplot (b) in Fig. 6.31. The low-pass filter shifts the
phase by an amount of −90◦ per nl, the order of the filter, and the distortion spans
over two decades around the cutoff frequency. With the low-pass filter added as part of
the controller, this makes instability a possibility as the phase response of the open-loop
transfer function gets below −180◦. Therefore, the open-loop transfer function must be
inspected with additional post-filtering to make sure that, at unity gain frequencies, the
phases are above −180◦.

Alternatively, since ωc is a continuous variable, it can be optimized for a targeted
phase margin. This way, the cutoff frequency gets as low as possible with guaranteed
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Figure 6.31: Frequency response of low pass filters. (a) Magnitude response. (b) Phase
response. Blue solid: 1st-order low-pass filter. Orange dashed: 2nd-order low-pass filter.
Green dash-dot: 3rd-order filter. Red dotted: 4th-order low-pass filter. ωc: cutoff angular
frequency.

stability. Algorithm 4 describes a simple 2-step approach to obtain a cutoff frequency
such that the open-loop transfer function with the low-pass filter has guaranteed phase
margin. The algorithm is similar to Algorithm 3, it first obtain a lower limit and an upper
limit of the cutoff frequency, and then, use bisection algorithm to search for the target
cutoff frequency.
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Algorithm 4 Optimizing the low-pass filter cutoff frequency

P (s)← k
∏nz

i=1 s
2+

ω′
n,i
q′ s+ω′2

n,i∏np
i=1 s

2+
ωn,i
q

s+ω2
n,i

▷ The transfer function model.

K(s)← kp +
ki
s
+ kds ▷ The designed controller (Not necessarily PID).

ωugf,i ← get_unity_gain_frequencies(K(s)P (s)) ▷ List of unity gain frequencies.
ω̄c ← 10max(ωugf,i) ▷ The upper limit of the cutoff. E.g. 10 times max UGF.
L(s;ωc) =

(
ωc

s+ωc

)nl

▷ The low-pass filter.
ϵ = 0.1 ▷ A multiplicative decrement. For example, 0.1.
ϕtarget ← 45 ▷ The target phase margin. For example, 45◦.
ωc ← ω̄c ▷ Initialize a lower limit of the cutoff frequency.

Decrement the lower limit until the phase margin is lower than the target:
while Min. phase margin of L(s;ωc)K(s)P (s) < ϕtarget do

ωc ← ωc

1+ϵ

end while

Bisection algorithm to find the target cutoff frequency:
tolerance← 10−6 ▷ An acceptable tolerance for termination. For example, 10−6.
ϕ̄← Min. phase margin of L(s; ω̄c)K(s)P (s) ▷ Phase margin with ωc = ω̄c.
ϕ← Min. phase margin of L(s;ωc)K(s)P (s) ▷ Phase margin with ωc = ωc.

▷ The target phase margin is between (ϕ, ϕ̄)

while ϕ̄−ϕ

ϕ
> tolerance do

ω′
c = 10

log ω̄c+logωc
2 ▷ Logarithmic center between the lower and upper limits.

if Min. phase margin of L(s;ω′
c)K(s)P (s) < ϕtarget then ▷ Phase margin too low.

ωc ← ω′
c ▷ Tighten the lower limit.

ϕ← Min. phase margin of L(s;ωc)K(s)P (s) ▷ Re-evaluate ϕ.
else ▷ Phase margin can be lowered.

ω̄c ← ω′
c ▷ Tighten the upper limit.

ϕ̄← Min. phase margin of L(s; ω̄c)K(s)P (s) ▷ Re-evaluate ϕ̄.
end if

end while
ωc ← ω′

c ▷ The target cutoff frequency
return ωc

The first step is to obtain an upper limit of the cutoff frequency ω̄c by setting it to some
multiple of the highest unity gain frequency of K(s)P (s), the original open-loop transfer
function. In Algorithm 4, it is set to 10 times that of the highest unity gain frequency, but
in principle, it can be higher. The idea is for ω̄c to be high enough such that the phase
margin of K(s)P (s) is roughly the same as that of L(s; ω̄c)K(s)P (s). Then, the lower
limit ωc is found by an iteration. The lower limit is first initialized by ωc = ω̄c. And then,
in each step, it is divided by a factor of 1 + ϵ, where ϵ is a small number and is set to 0.1
in the algorithm as an example. The minimum phase margin of the open-loop transfer
function with the low-pass filter L(s;ωc)K(s)P (s) is evaluated in each step. When it is
lower than the target phase margin ϕtarget, the iteration terminates and the lower limit is
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found. The minimum phase margins corresponding to the lower limit and the upper limit
of the cutoff frequency are evaluated as ϕ and ϕ̄, respectively.

The target phase margin is believed to lie between (ϕ, ϕ̄), so a bisection algorithm
can be used to search for the target cutoff frequency. The bisection algorithm tightens
the boundaries (ωc, ω̄c) until the phase margins ϕ and ϕ̄ are closed enough, such that the
fractional difference (ϕ̄−ϕ)/ϕ is smaller than an acceptable tolerance, which is set to 10−6

in the algorithm for example. Alternatively, the termination condition can be set such that
the cutoff frequencies ωc and ω̄c are close enough. In each step of the bisection algorithm, a
trial cutoff frequency ω′

c is set to the logarithmic center of ωc and ω̄c. Then, the minimum
phase margin of L(s;ω′

c)K(s)P (s) is evaluated. If it is lower than the target phase margin
ϕtarget, then the lower limit is tighten by setting it to ωc = ω′

c and the corresponding phase
margin ϕ is re-evaluated as the minimum phase margin of L(s;ωc)K(s)P (s). Otherwise,
if the minimum phase margin of L(s;ω′

c)K(s)P (s) is higher than the target phase margin
ϕtarget, then the upper limit ω̄c is tightened and ϕ̄ is re-evaluated. The process repeats
until, again, the fractional difference (ϕ̄ − ϕ)/ϕ is smaller than an acceptable tolerance.
And, in the end, the target cut-off frequency ωc is obtained.

While Algorithm 4 works to provide the low-passed open-loop transfer function with
a target phase margin, the controller with the low-pass filter may not be robust. This
is because the unity gain frequency may happen to be at frequencies where the phase
response has a steep negative slope falling below −180◦, which is common for plants with
multiple resonances. The SRM F1 GAS filter is an example of this category. As shown in
subplot (b) of Fig. 6.28, the phase response swings drastically with steep slopes and it is
entirely possible that the unity gain frequencies happen to be on one of the steep slopes.
This would mean that if there is a slight deviation in the modeled plant and the actual
frequency response, the phase response at those frequencies changes by a large amount
with a possibility to go below −180◦. To prevent this from happening, the during the
evaluation of the phase margins, instead of using the plant P (s) directly, a reduced plant

P ′(s) = kDC

ω2
n,1

s2 + ωn,1

q1
s+ ω2

n,1

, (6.97)

can be used to evaluate the phase response, where ωn,1 and q1 are the resonance frequency
and the quality factor of the lowest resonance mode of the original plant P (s) and kDC

is the DC gain of the original plant P (s). The phase response of P ′(s) is similar to
that of P (s) but it does not get bumped up by the additional complex zeros and poles.
Therefore, the phase response of P ′(s) serves as a pessimistic estimation as it is always
lower or equal to that of P (s). With that said, this is not sufficient as the minimum phase
margin of L(s;ωc)K(s)P (s) might not that of L(s;ωc)K(s)P ′(s). Therefore, it is only
safe to execute the bisection algorithm in Algorithm 4 twice, one with P (s) and one with
P ′(s). After that, the higher cutoff frequency is chosen to be the final one. Nevertheless,
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It is always a good practice to perform a visual inspection of the phase response to ensure
the unity gain frequencies do not lie on the falling edges (for those that fall below −180◦)
of the phase response.

Post-filtering for the SRM F1 GAS filter controller

Using Algorithm 4, and with nl, the low-pass filter was optimized for the SRM F1 GAS
filter degree of freedom. The cutoff frequency was found to be ωc = 71.04, i.e. at 11.31Hz.
The final controller is the PID controller obtained in Sec. 6.4.2 with the low-pass filter.
The magnitude response of the control filters is shown in Fig. 6.32 as a reference.
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Figure 6.32: SRM F1 GAS filter control filters. Blue solid: PID controller. Orange dashed:
Low-pass post-filter. Green dash-dot: PID controller with low-pass post-filtering.

The corresponding open-loop transfer functions are plotted in Fig. 6.33. First of all,
from subplot (a), it can be seen that the actuation to sensor coupling at high frequencies
has been attenuated to below the unity gain. Second of all, from subplot (b), the reduced
transfer function model P ′(s) (green dash-dot) indeed denotes a worst-case estimation
of the phase response of the transfer function model P (s) (orange dashed). The phase
response of P ′(s) is used in Algorithm 4 to evaluate the phase margins. As can be seen, at
the unity gain frequency (black dotted), the phase responses of the measured frequency
response, the transfer function model, and the reduced transfer function model cross the
target phase margin (black dash-dot). And, all phase margins are above the target phase
margin.

At last, the time response of the post-filtered PID controller is compared with that of
the PID controller. The SRM F1 GAS filter system is simulated with the two controllers
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Figure 6.33: SRM F1 GAS filter open-loop transfer function with low-pass post-filtering.
(a): Magnitude response. (b): Phase response. Blue solid: Open-loop transfer function
estimated with measured frequency response. Orange dashed: Open-loop transfer func-
tion estimated with transfer function model. Green dash-dot: Open-loop transfer function
estimated with the reduced transfer function model. Black dotted: Unit gain frequency
at which the phase margin is lowest. Black dashed in (a): Unity gain. Black dash-dot in
(b): Target phase margin. Black dashed in (b): −180◦.

to track a setpoint represented by a unit step function. The time responses are shown
in Fig. 6.34. As can be seen, there is practically no difference in time response perfor-
mance between the two controllers. They only difference is that now the post-filtered PID
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Figure 6.34: Simulated time response of the SRM F1 GAS filter control. Blue solid: PID
control. Orange dashed: PID controller post-filtered with low-pass filter.

controller can be implemented into digital control system of the KAGRA suspension.

Notch filter

A notch filter can be represented by a transfer function with one pair of complex poles
and another pair of complex zeros at the same frequency but with a higher Q factor. One
with a pair of complex zeros with a lower Q factor is called a peak filter that has a peak
rather than a notch filter. The are many ways to express a notch filter. The way the
Foton utility (a control utility used in LIGO and KAGRA) defines it is

Knotch(s;ωnotch, q, d) =
s2 + ωnotch

qd
s+ ω2

notch

s2 + 2ωnotch

q
s+ ω2

notch

, (6.98)

where ωnotch is the notch angular frequency, q and d are two other parameters. The q
parameter is behaves like the quality factor but is not quite the quality factor. It controls
the sharpness of the notch. The d parameter is attenuation at the notch frequency so it
represents the depth of the notch filter. In Fig. 6.35, the magnitude response of example
notch filters with different q and d are shown. As can be seen, the attenuation of the
notch filter at the notch frequency ωnotch is exactly 1/d, and the sharpness increases with
q.

The notch filter is useful in cases where peak-like structures in the signals or transfer
functions need to be removed. One typical example would be the vertical degrees of
freedom of the type-B suspension bottom filter (BF) and the intermediate mass (IM).
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Figure 6.35: Magnitude responses of notch filters. Blue solid: Notch filter with q = 1, d =
10. Orange dashed: Notch filter with q = 10, d = 10. Green dash-dot: Notch filter with
q = 1, d = 100. Red dotted: Notch filter with q = 10, d = 100.

The magnitude responses of those degrees of freedom are shown in Fig. 6.36. Again, from
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Figure 6.36: SRM BF GAS filter and IM vertical magnitude response. Blue solid: Mea-
sured frequency response of the BF GAS filter. Orange dashed: BF GAS filter transfer
function model. Green dash-dot: IM vertical transfer function model.

the measured freuqency response of the BF GAS filter (blue solid), the ∝ f 2 actuation to
sensor coupling due to magnetic coupling is clearly visibly at high frequency. And, this
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is not modeled as part of transfer function. Together with it, there is a resonance peak
at 11.4Hz that is not modeled as well due to the increased complexity as it falls into the
frequency where actuation to sensor coupling dominates.
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Figure 6.37: SRM BF GAS filter open-loop transfer function. (a): Magnitude response.
(b): Phase response. Blue solid: PID with low-pass post-filtering open-loop transfer
function estimated with the measured frequency response. Orange dashed: PID with
low-pass post-filtering open-loop transfer function estimated with the transfer function
model. Green dash-dot: PID with low-pass and notch post-filtering open-loop transfer
function estimated with the measured frequency response.

Assuming that the unmodeled resonance is of no issue, the transfer function model
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(orange dashed in Fig. 6.36) is used to design a PID controller and a low-pass post-filter
according to Sec. 6.4.2 and low-pass filter subsection in Sec. 6.4.3. The open-loop transfer
function is shown in blue solid and orange dashed in Fig. 6.37, with the former estimated
with the measured frequency response and the latter estimated with the transfer function
model. As shown in Fig. 6.37 the open-loop transfer function estimated with the transfer
function model (orange dashed) showed no issues whatsoever, i.e. phase margin target is
met and actuation to sensor coupling is well filtered. However, the one estimated with the
frequency response (blue soild) reveals a serious problem. In subplot (a), at ∼ 11.4Hz,
the neglected peak goes above unity gain. And in subplot (b), at that frequency, the
phase response is clearly below −180◦ (starting to fall below −180◦ at ∼ 3Hz), indicating
that the system is unstable. Therefore, the PID controller with low-pass filter is not
implementable in reality. To solve this issue, the controller must be post-filtered by a
notch filter to keep the system stable.

In principle, the notch filter only needs to attenuate the peak in the open-loop gain
such that it goes sufficiently below the unity gain. However, this requirement is loosely
defined as there are multiple values of q and d that can achieve this. Moreover, the
peak height from the measurement is not always accurate due to measurement error and
resolution. Therefore, putting the peak below the unity gain is not necessarily sufficient
to ensure stability. Instead, a perfect pole cancellation approach is suggested here as a
conservative approach.

Suppose the complex poles in the plant associated with the peak that needs to be
filtered is

Ppeak(s) = kDC

ω2
p

s2 + ωp

qp
s+ ω2

p

, (6.99)

where kDC is the DC gain of the transfer function Ppeak(s), ωp is the angular frequency
where the peak is located and qp is the associated quality factor. This transfer function
can be obtained by decomposing the suspension plant into superposition of complex-pole
pairs. To exactly cancel this peak, the notch filter needs to have a pair of complex
zeros with ωnotch = ωp and qd = qp. The notch filter should not change the frequency-
dependency at higher frequency so it must restore the f−2 roll-off originally supplied by
the complex poles in the plant. This requires the notch filter to contain a double simple
pole at −ωp. This gives the notch filter

Knotch(s) =
s2 + ωp

qp
s+ ω2

p

(s+ ωp)
2 . (6.100)

This gives the notch filter parameters ωnotch = ωp, q = 1, and d = qp.

In theory, this above method works well to obtain a notch filter that perfectly cancels
the peak. But such low value of q sometimes results in an ill-definition in the Foton
utility, which would result in an error. Instead, consider notch filter that has a depth
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roughly equal to the peak height. The peak of the plant (6.99) locates at ω ≈ ωp, and
the associated height is ∼ kDCqp. Then, the notch filter needs to change that height to
kDC, which requires the complex poles of the notch filter to have a quality factor of 1.
While the complex zeros of the notch filter needs to cancel the original complex poles of
the plant, this gives

Knotch(s) =
s2 + ωp

qp
s+ ω2

p

s2 + ωps+ ωp

. (6.101)

Comparing this with Eqn. (6.98), the notch parameters are then q = 2, d = qp and
ωnotch = ωp are obtained. It is worth mentioning that the peak height kDCqp is only an
approximation, so the notch filter does not exactly put the peak at the DC gain. But, this
formulation works most of the time in the Foton utility so it is preferred. Otherwise, the
former approach with q = 1 can always be implemented in Foton by manually entering
the complex poles and zeros instead of using the notch filter definition in Foton.

Coming back to the SRM BF GAS filter control, since the peak at 11.4Hz is not
modeled, the transfer function model (orange dashed line in Fig. 6.36) is not useful for
obtaining Ppeak(s), which is required to define the notch filter. Instead, consider the
transfer function of the vertical degree of freedom of the intermediate mass, which is shown
as green dash-dotted line in Fig. 6.36. The 11.4Hz peak is also present. This should be
of no surprise since the BF GAS filter degree of freedom is, in principle, measuring the
vertical motion of the intermediate mass as it hangs from the BF GAS filter keystone.
Therefore, the vertical transfer function model of the intermediate mass can be used to
obtain the required notch filter.

After the obtaining the notch filter, the low-pass filter needs to be optimized using
Algorithm 4 butK(s) is not the PID controller, but the PID controller with the notch filter
applied. This is because the notch filter will also change the phase response open-loop
transfer function so applying the notch filter directly without re-optimizing the low-pass
filter would put the phase margin off the target. This means the low-pass filter with the
notch filter has a different cutoff frequency compared to that without the notch filter. The
open-loop transfer function using the final controller (PID with low-pass and notch filters)
is shown as green dash-dot in Fig. 6.37. As can be seen, the peak around 11.4Hz is no
longer observable and this makes a stable closed-loop system. And finally, this concludes
the long Chapter 6.
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H∞ optimization of control filters in
active vibration isolation systems
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Chapter 7

Active Isolation Control Filters

The pre-isolator of the type-A and type-B suspensions at KAGRA is the first stage in the
suspension chain. It is the interface between the ground and the rest of the suspension that
holds the optics. By virtue of the anti-spring effect, the horizontal resonance frequencies of
the inverted pendulum suspending the pre-isolator table can be reduced to below 0.1Hz.
This means that the pre-isolator provides passive seismic noise attenuation above 0.1Hz

and the level of attenuation grows as ∼ f 2 above the resonance frequency. Hence, the
pre-isolator not only provide a ∼ 104 times attenuation above the detection band at
10Hz, but also provide some level of seismic isolation at the frequency band where the
secondary microseism dominates, which is around 0.1Hz− 0.5Hz. For example, Fig. 7.1
shows the magnitude response (from actuation to displacement) of the SRM pre-isolator
in the longitudinal direction. As can be seen, the resonance frequencies of the lowest
horizontal modes are well below 0.1Hz. From the figure, the DC gain is ∼ 10−1 and at
0.2Hz, the magnitude is ∼ 10−2. Assuming that the transfer function from the ground
to pre-isolator displacement has roughly the same shape as shown in the figure, this gives
roughly 10 times passive attenuation at the secondary microseism (simply referred to
microseism hereafter).

The secondary microseism is a background hum in the seismic noise and it appears as a
peak in the seismic noise spectrum. It dominates the motion of the ground. Fig. 7.2 shows
the amplitude spectral density of the seismic noise measured in the KAGRA mine along
the Y-arm direction. Here, the mean, the 10th percentile, the 50th percentile and the 90th

percentile spectra are shown. Also, note that at frequencies below 0.1Hz, the seismometer
noise dominates so the spectra do not represent the real seismic noise at those frequencies.
As can be seen, at above 0.1Hz, the seismic noise spectrum is indeed dominated by a peak
corresponding to the secondary microseism. The seismic noise level can vary from time
to time, depending on the weather. As shown in Fig. 7.2, the microseismic peak can go
as low as ∼ 0.1 µm/

√
Hz at the 10th percentile and it can go as high as ∼ 1 µm/

√
Hz at

the 90th percentile.
While the pre-isolator of the type-A and type-B provides some attenuation to the
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Figure 7.1: SRM IP longitudinal magnitude response.

microseism, the resonances of the suspension are still being excited by the seismic noise at
other frequencies. In turn, the resonant motion of the suspension become the dominating
factor in the residual motion of the suspension. To suppress the resonances, the use of
feedback control, in particular, derivative control, is already discussed in Sec. 6.4. An
algorithmic way to obtain the critical derivative gain is also provided. However, the
handling of sensing noise has not been discussed. At the pre-isolator stage, the sensors in
question are the linear variable differential transformers (LVDTs). While they work well
for damping the resonances, there is another issue: they measure relative displacements
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Figure 7.2: Seismic noise at KAGRA [53]. Blue solid: Mean spectrum. Orange dashed:
10th percentile. Green dash-dot: 50th percentile. Red dotted: 90th percentile.

rather than inertial motion. This means that the LVDT measurement is coupled to
seismic noise. Fig. 7.3 shows the displacement spectrum of the SRM pre-isolator table
in the longitudinal direction measured by the LVDT (orange dashed) and the geophone
(green dash-dot) under a free swing condition. The seismic noise (blue) is also plotted
for a reference. As can be seen, the microseism at around 0.2Hz is measured almost
perfectly by the LVDT. This is not present in the geophone readout, which means the
peak correspond to a real seismic coupling but not real motion of the pre-isolator table.

Recall the displacement of a controlled platform X(s), Eqn. (5.4), is a superposition
of disturbance D(s) and sensing noise N(s). To restate Eqn. (5.4), the displacement of a
feedback controlled object is

X(s) =
1

1 +K(s)P (s)
D(s)− K(s)P (s)

1 +K(s)P (s)
N(s) , (7.1)

where X(s) is the displacement of an object that needs to be controlled, K(s) is the
controller, P (s) is the actuation plant, D(s) is the disturbance, and N(s) is the sensing
noise. The sensing noise is inevitably injected into to the displacement of the controlled
platform where the open-loop gain |K(jω)P (jω)| is not low enough. With the LVDT
coupled to the seismic noise, this means that the secondary microseism is also inevitably
re-injected to the motion of the pre-isolator table via the feedback action. And, this puts
the situation into a dilemma.

There are three ways to resolve this,

1. Sensor fusion,
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2. Sensor correction, and

3. Feedback control optimization.

They are briefly discussed and reviewed in Sec. 7.1, 7.2, and 7.3, respectively. Each of the
approach corresponds to an optimization of a control filter(s) in the control system. They
are the complementary filters, the sensor correction filter, and the feedback controller,
respectively. They can be used independently to improve control performance or they
can be used in conjunction. The optimization of these control filters is discussed in later
sections after the introduction of the H∞ method in Chapter 8, which comes shortly after
this chapter.

7.1 Sensor fusion using complementary filters

The idea of sensor fusion is to combine two or more types of sensors with different noise
characteristic into one “super sensor” that has an overall better noise performance. There
are more than one way achieve sensor fusion. In LIGO, Virgo, and KAGRA, the readouts
from different types of sensors are digitally filtered by low-pass filters, band-pass filters,
or high-pass filters [26, 27, 29]. The idea of filtering is to pick the sensor readout from
frequency region where the sensor has good noise performance and ignore those where the
noise performance is poor. The filtered readouts from different types of sensors are then
summed into one complete super sensor readout. In order to obtain the original signal
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that the sensors all commonly measure, the filters need to be complementary, meaning
that their transfer functions are summed to unity. Suppose Hi(s) is the transfer function
of the ith filter and there are n sensors, the following constraint

n∑

i

Hi(s) = 1 , (7.2)

has to be satisfied so the original signal is not distorted in the super sensor readout,
assuming that the sensors are all well inter-calibrated. For this reason, these filters are
called complementary filters.

In KAGRA, the pre-isolators of the type-A and type-B are equipped with two types of
sensors, LVDT and geophone1, as mentioned previously. They both measure the motion
of the pre-isolator table. But, in the case of the LVDT, it also measures the motion of the
ground since its readout is relative. As a result, the presences of the secondary microseism
in the LVDT readout makes it undesirable to be used at frequencies higher than ∼ 0.1Hz.
On the other hand, the geophone measures inertial motion of the pre-isolator table rather
than relative motion. This means the microseism is not coupled to the geophone readout,
making it plausible to be used at frequencies higher than ∼ 0.1Hz. However, inertial
measurement units, including geophones, are intrinsically AC-coupled, meaning that they
have poor low-frequency performance. In the case of KAGRA geophones, it so happens
that the geophones start to become noisier than the LVDTs also at frequencies lower
than ∼ 0.1Hz. The LVDT readout requires a low-pass filter while the geophone readout
required high-pass filtering. This makes the LVDT and geophone a perfect complement
for each other. And, the question is how should these filters be designed?

To state the sensor fusion problem formally, consider a two-sensor configuration as
shown in Fig. 7.4. In Fig. 7.4, X(s) is the signals that the two sensors are commonly
measuring. The two sensor readouts are Y1(s) and Y2(s). They read

Y1(s) = X(s) +N1(s) (7.3)

and
Y2(s) = X(s) +N2(s) , (7.4)

where N1(s) is the sensing noise of the sensor 1 and N2(s) is the sensing noise in sensor
2. H1(s) and H2(s) are the complementary filters that filter the readouts Y1(s) and Y2(s),
respectively. The filtered readouts are summed to become a super sensor readout Ysuper(s),

1Some type-A suspensions are equipped with a new type of folded pendulum accelerometer [54].
Development and testing are still on-going.
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Figure 7.4: Two-sensor sensor fusion configuration.

and it reads

Ysuper(s) = H1(s)Y1(s) +H2(s)Y2(s)

= [H1(s) +H2(s)]X(s) + [H1(s)N1(s) +H2(s)N2(s)] .
(7.5)

Now, the complementary filters need to satisfy the complementary condition as stated in
Eqn. (7.2), so

H1(s) +H2(s) = 1 . (7.6)

This gives
Ysuper(s) = X(s) +Nsuper(s) , (7.7)

where the super sensor noise Nsuper(s) is defined as

Nsuper(s) ≡ H1(s)N1(s) +H2(s)N2(s) . (7.8)

And here, the super sensor noise Nsuper(s) is the quantity that is sought to be minimized
(in some way) via an optimization of the complementary filters H1(s) and H2(s) under
the constraints stated in Eqn. (7.6).

The transfer function of the complementary filters can take any form as long as the
complementary condition is met. This makes the design of the complementary filters
challenging as the optimization is not a straightforward minimization over certain param-
eters. In Ref. [29], an pair of complementary filters is proposed for the sensor fusion of
the KAGRA LVDTs and geophones. The complementary filters are given as

H1(s;ωb) =
35ω4

bs
3 + 21ω5

bs
2 + 7ω6

bs+ ω7
b

(s+ ωb)7
(7.9)
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H2(s;ωb) =
s7 + 7ωbs

6 + 21ω2
bs

5 + 35ω3
bs

4

(s+ ωb)7
. (7.10)

where ωb is the angular frequency where the magnitude response of the two filters are
equal, i.e the blending frequency. The magnitude response of these complementary filters
are shown in Fig. 7.5 as an example. As can be seen, the both complementary filters
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Figure 7.5: Magnitude response of example complementary filters. Blue solid: Low-pass
filter. Orange dashed: High-pass filter.

have a 4th-order roll-off. According to Ref. [29], this filter was chosen according to the
frequency-dependency of the geophone noise at low frequencies, which is proportional to
∼ f−3.5. While it seems reasonable to choose a high-pass filter with a 4th-order for the
geophone, a 4th-order low-pass filter seems excessive for filtering the LVDT noise, which is
white at high frequency. Following the same argument, a pair of 1st-order low-pass filter
and 4th-order high-pass filter should be a more suitable choice of complementary filters
for filtering the f 0 noise of the LVDT and f−3.5 noise of the geophone.

Ref. [55] generalizes the complementary filters as stated in Eqn. (7.9) and (7.10). It
provides a class of complementary filter pairs that is described by

H1(s; a;nl, nh) =

nh−1∑
i=0

(
nl + nh − 1

i

)
a(nl+nh−1−i)si

(s+ a)nl+nh−1
(7.11)

and

H2(s; a;nl, nh) =

nl+nh−1∑
i=nh

(
nl + nh − 1

i

)
a(nl+nh−1−i)si

(s+ a)nl+nh−1
, (7.12)
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where (
nl + nh − 1

i

)
=

(nl + nh − 1)!

i!(nl + nh − 1− i)! , (7.13)

are the binomial coefficients of the polynomial (s+ a)nl+nh−1, nl is the order of roll-off of
the low-pass filter, nh is the order of roll-off of the high-pass filter, and a is a real-value
variable. It is easy to see that the complementary filters described by Eqn. (7.9) and
(7.10) falls into this category, with nl = nh = 4. Therefore, Eqn. (7.11) and (7.12) can be
thought as a generalization of Eqn. (7.9) and (7.10) with any arbitrary order of roll-off
for the complementary filters. This makes designing a pair of 1st-order low-pass filter and
4th-order high-pass filter possible for the sensor fusion of LVDT and geophone by selecting
nl = 1 and nh = 4.

If the noise of the super sensor can be expressed with a cost function, for example,
the root-mean-square value of the noise, then the design of the complementary filters
can be straightforwardly obtained by minimizing the cost function over the parameter
a. The class of complementary filters presented are simple and easy to design. How-
ever, this is not the optimal approach. The class of complementary filters represented in
Eqn. (7.11) and (7.12) is not a general representation of all complementary filters. For
example, [H1(s; a; 4, 4)+H1(s; a; 1, 4)]/2 and [H2(s; a; 4, 4)+H2(s; a; 1, 4)]/2 are also a pair
of complementary filters but they cannot be represented by Eqn. (7.11) and (7.12). And,
there are infinitely many ways to represent complementary filters. Using Eqn. (7.11) and
Eqn. (7.12) are essentially putting additional constraints on the optimization problem.

It is worth mentioning that the complementary filters in Eqn. (7.11) and (7.12) only
work well at filtering the asymptotic behavior of the sensor noise at the ends of the
spectrum. As shown in Fig. 7.3, in the middle of the spectrum, the LVDT readout
is coupled to the secondary microseism, which is clearly visible at around 0.2Hz. The
spectral shape a sensor noise does not follow an asymptote in general and contain different
features at different frequencies. The necessarily means that the complementary filters
in Eqn. (7.11) and (7.12) will not handle those features well, making them sub-optimal.
Refs. [26, 27] show examples of complementary filters that contain notch features that
are designed to especially the attenuate the seismic noise in relative sensors. However,
the transfer functions of these complementary filters are manually designed according
to practical experience and are very hard to reproduce for other systems. They are
not optimized either since they are manually tuned. As will be seen in later sections,
these complementary filters can be optimized with no information other than the sensor
noises themselves and these special filtering features will naturally appear as a result of
optimization.
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7.2 Sensor correction for relative displacement sensors

Sensor correction is a control strategy used in LIGO to convert a measured relative dis-
placement between a sensed platform and a reference platform to an inertial readout mea-
suring majorly the motion of the sensed platform [26]. This is achieved by subtracting
the relative readout by an inertial readout of the reference platform, thereby “correcting”
the relative sensor readout. The sensor correction scheme is distinguished from the sensor
fusion scheme, which uses an inertial readout of the sensed platform instead. In KAGRA,
there are several seismometers measuring the ground motion at proximities to the main
optics. They can be used to remove the seismic noise component in the relative sensors,
i.e. the LVDTs, at the pre-isolator stage. Again, here it is assumed that the relative
sensors and seismometers are well inter-calibrated.

The block diagram of the sensor correction scheme at the pre-isolator stage is shown in
Fig. 7.6. In the figure, X(s) denotes the displacement of the pre-isolator table and Xg(s) is

Figure 7.6: Sensor correction scheme at the pre-isolator stage.

the ground displacement. The relative sensor reads a relative displacement X(s)−Xg(s).
It contains a self-noise Nrel(s) so the relative readout Yrel(s) is

Yrel = X(s)−Xg(s) +Nrel(s) . (7.14)

The ground motion Xg(s) is measured by a seismometer that has a self-noise of Nseis(s).
The seismometer readout Yseis(s) then simply reads

Yseis(s) = Xg(s) +Nseis . (7.15)

Now, the ground componentXg(s) in Eqn. (7.14) is an unwanted signal. It can be removed
by adding the seismometer readout (7.15) to the the relative readout (7.14) via a sensor
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correction filter Hsc(s). This gives a sensor corrected readout Ysc(s) and it reads

Ysc(s) = Yrel(s) +Hsc(s)Yseis(s)

= X(s)−Xg(s) +Nrel(s) +Hsc(s) [Xg(s) +Nseis(s)]

= X(s) +Nrel(s) +Hsc(s)Nseis(s)− [1−Hsc(s)]Xg(s) .

(7.16)

The sensor correction readout can be rewritten as

Ysc(s) = X(s) +Nrel(s) +Nsc(s) , (7.17)

where Nsc(s) is the sensor correction noise defined as

Nsc(s) ≡ HscNseis(s)− [1−Hsc(s)]Xg(s) . (7.18)

Here, the sensor correction readout in Eqn. (7.17) has one signal term X(s) and two
noise terms Nrel(s) and Nsc(s). The relative displacement sensor noise Nrel(s) is not
minimizable by means of sensor correction filtering. Therefore, it remains as an ambient
noise in the sensor correction readout. This is an important note for sensor correction filter
optimization, as is indicated in later sections. On the other hand, the sensor correction
noise Nsc(s) is minimizable by optimizing the sensor correction filter Hsc(s). In fact, the
sensor correction noise in the form of Eqn. (7.18) is very similar to super sensor noise in
the form of Eqn. (7.8), assuming that one of the complementary filters can be represented
as H2(s) = 1 − H1(s) due to the complementary condition. For this reason, the sensor
correction problem is very similar to that of the sensor fusion and can be solved in a
similar way. However, even if this is acknowledged in Ref. [56], the sensor correction
problem and sensor fusion problem have seemingly be treated as separate problems.

The relative readout cannot be subtracted by the seismometer readout directly without
a sensor correction filter. This is because the seismometer is an inertial sensor like the
geophone. The seismometers at KAGRA have a slightly different noise profile than the
geophones but they are still intrinsically AC-coupled. Therefore, they have poor noise
performance at low frequency. For this reason, the sensor correction filter needs to be
a high-pass filter that attenuates the low-frequency noise of the seismometer. Besides,
the sensor correction filter also need to have a pass-band at above ∼ 0.1Hz such that
the secondary microseism gets removed from the relative readout. At the pass-band, the
magnitude response of the sensor correction filter needs to be as closed to unity as possible
and the phase needs to be as close to zero as possible. While this might seem reasonable,
this is not the case when the ambient noise is put into consideration, i.e. the seismic noise
attenuation needs not to be infinity. The seismic noise attenuation only needs to be just
enough such that none of the seismic noise, relative sensor noise, and seismometer noise
dominates in the sensor correction readout.
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The first design of a sensor correction filter for LIGO is given in Ref. [56]. In Ref. [56],
the sensor correction filter is designed according to the the following criteria:

1. Below 0.008Hz, the magnitude response of the sensor correction filter needs to be
lower or equal to 8× 10−4.

2. Between 0.008Hz and 0.04Hz, the roll-off of the high-pass filter should be f 3.

3. Between 0.04Hz and 0.01Hz, the magnitude response of the sensor correction filter
is allowed to have an amplification of at most 3.

4. Above 0.01Hz, the transmissivity of seismic noise should be as close to zero as
possible. Equivalently, this requires the magnitude response of the sensor correction
filter to be as close to one as possible with phase as close to zero as possible. If
the optimized filter gives seismic transmissivity greater than 0.1, other requirement
need to be loosened.

The sensor correction filter satisfying these requirements was replicated in Ref. [57] and
is shown as blue solid in Fig. 7.7 as an example. While it is possible to to satisfy all the
requirements stated, the sensor correction filter satisfying these requirement is not neces-
sarily the optimal sensor correction filter. This is due to the fact that the requirements
were set based on heuristics, which maybe arbitrary and sub-optimal. For example, in
the forth criterion, there is no reason why the seismic transmissivity should be less than
one and it certainly shouldn’t be set to as low as possible. This is because the sensor
correction readout is limited by the relative sensor noise, which is ambient anyway.

The default sensor correction filter in KAGRA is simply a 2nd-order elliptic high-pass
filter as shown as orange dashed line in Fig. 7.7 [31]. The order of roll-off was set to cancel
the f−2 noise of the seismometer noise at lower frequency. And, the pass-band was set
to be above 0.06Hz, which is based on the fact that the primary microseism at around
0.06Hz is observable in the seismometer readout as shown in Fig. 7.2. This forces the
noise amplification band to be lower than that frequency where the seismometer noise is
high. As a consequence, this sensor correction scheme with this filter injects more noise to
the sensor correction readout than it suppresses. With position control system engaged,
the pre-isolator table, along with the whole suspension chain, would drift at ∼ 0.013Hz

with an excess amount that is non-negligible, causing difficulty to lock-acquisition of the
interferometer [58]. Therefore, this sensor correction filter is not used currently.

Ref. [59] gives the first attempt at optimizing the sensor correction filter to minimize
the sensor correction noise using a particle swarm optimization algorithm. While it was
shown that the method can reduce the root-mean-square (RMS) value of the sensor correc-
tion noise in velocity unit, there are some caveats. First of all, the RMS value in velocity
is only one of many performance indexes of seismic isolation. Therefore, minimizing the
RMS value in velocity does not necessarily lead to a good seismic isolation filter. Solely
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Blue solid: First LIGO sensor correction filter (replicated). Orange dashed: KAGRA
sensor correction filter.

using an RMS value as a cost function is not optimal either. This is because the RMS
value is a value integrated over the whole full frequency spectrum, which makes broad-
band features more dominant than peak features in the cost function. The RMS value
is also usually dominated by one feature that is the highest in the spectrum, such as the
microseism. Features with smaller values have very low weighting in the cost function and
are usually not treated. Second of all, the implement of an artificial frequency-dependent
weighting function in the cost function doesn’t help either as it distorted the original
purpose of the optimization, which is a reduction in RMS velocity. Most importantly,
the method optimizes a transfer function with a pre-defined structure. As mentioned in
Sec. 7.1, this puts unnecessary constraints on the optimization problem, which makes the
final product sub-optimal. Nevertheless, the work claimed that the improvement in veloc-
ity noise performance is most significant between 0.4Hz and 0.9Hz where the amplitude
spectral densities of the noise is clearly below 10−9m/sec/

√
Hz. The ambient noise from

the capacitive sensors, the relative sensors used at LIGO, have a noise of sightly below
10−9m/

√
Hz [60], which translates to slightly higher than 10−9m/sec/

√
Hz in velocity.

Therefore, the improvement may not be observable in reality.

7.3 Feedback control filters

The concept of feedback control for coarse alignment and damping of the suspensions
has been discussed previously in Sec. 6.4. The presented method allows one to design a
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feedback controller composes of a PID controller and optionally with low-pass and notch
post-filtering. The feedback control filter is simple, easy-to-use, and is readily available
for implementation to the actual active vibration isolation systems in gravitational-wave
detectors. However, the presented method is based on a critical damping criterion, which
is conservative. The controller shaped this way is not optimal in any sense. The method
is also based on a pre-defined controller with a PID structure, which is not the only
way a controller can be shaped. For example, the controller can contain a component
representing the inverse of the plant that completely cancels the dynamics of the plant.
In this case, other multiplicative components in the controller represents the required
control bandwidth, which can be designed as if the plant is unity. Therefore, as can
be seen, the PID structure is not the most general. It would introduce unnecessary
constraints to the underlying optimization problem and alternative must be seek for a
truly optimized system.

Still, in current literature, documented feedback controllers for active isolation systems
in current gravitational-wave detectors are largely based on the PID structure as described
in Sec. 6.4, even though the design method may be different [30, 29, 31, 27, 33, 28,
26, 61]. While performances of the controllers are claimed, most of the results are not
reproducible since the actual analytic form of the controller is usually not documented
and the design methodology is not well-defined. Also, in many KAGRA literature [30, 29,
31, 33], the decay time constants of the resonances are used as a performance index for
controller tuning. While the decay time indicates how the control system reacts to a step
disturbance, it is not sufficient to prove the efficacy of an active isolation controller as the
decay time only indicates the transient response, not the steady state. The RMS values
of the optics displacement are sometimes measured also. This maybe a good indicator
as the lock stability of the interferometer has a strong correlation to low RMS values.
However, the results are not obtained from “controlled experiments” since the external
disturbances are neither measured nor injected. This means that the results may differ
as the environment changes.

The optimization of a feedback control is to make the optimal trade-off between the
disturbance rejection and noise attenuation. As indicated in Eqn. (7.1), the displacement
of a controlled platform X(s) is a superposition of disturbance D(s) and noise N(s). The
corresponding coupling terms for the disturbance D(s) and the noise N(s) are 1/[1 +

K(s)P (s)] and K(s)P (s)/[1 + K(s)P (s)], respectively. And, the goal of the feedback
control problem is to design a controller K(s) such that the controlled displacement X(s)

is minimized in some sense. Roughly speaking, the open-loop gain K(s)P (s) needs to
be high when D(s) is greater than N(s) and needs to be low (lower than 1) when D(s)

is smaller than N(s). This makes X(s) ≈ −N(s) when N(s) is the smaller term and
X(s) ≈ D(s) when D(s) is the smaller term, i.e. X(s) becomes close to the lower limit.

In control theory, the coupling terms 1/[1+K(s)P (s)] andK(s)P (s)/[1+K(s)P (s)] are
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termed sensitivity and complementary sensitivity, respectively. In the two terms, the only
design freedom is the controller K(s). And, it should be no surprise that the two terms
are complementary, i.e. the transfer functions of the two terms are summed to unity.
This makes the feedback control problem effectively a sensor fusion problem. Hence,
the underlying problem is identical to that of Eqn. (7.8) and (7.18). The sensitivities
1/[1 + K(s)P (s)] and K(s)P (s)/[1 + K(s)P (s)] are analogues to the complementary
filters H1(s) and H2(s). And, the disturbance D(s) and noise N(s) are analogues to the
two sensing noises N1(s) and N2(s). Therefore, similar to sensor correction, the feedback
control problem can also be solved like a complementary filter problem.
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Chapter 8

H∞ Optimization of Control Filters

H-infinity (H∞) method [62] is a relative new and advanced method of optimization con-
trollers. In this chapter, the H∞ optimization of control filters, including complementary
filters, sensor correction filters, and feedback controllers, of the active isolation systems is
discussed. This chapter is divided into four sections. Sec. 8.1 introduces the idea of H∞

control and its formalism. Sec. 8.2 explains how the filter shaping problems can be for-
mulated as an H∞ problem. Examples will also be given whenever appropriate. Sec. 8.3
shows experimental results using the KAGRA SRM suspension. And, the H∞ filters are
compared to the current control filters used in KAGRA.

8.1 H∞ method

8.1.1 Formalism

H∞ method refers to a controller synthesis process where the H∞ norm of a generalized
plant is minimized. To specify the H∞ problem, a few things need to be defined. To
begin with, consider a generalized plant representation shown in Fig. 8.1 In the figure,

Figure 8.1: Generalized plant representation.
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the generalized plant P(s) has two inputs w and u, and two outputs z and y. Note that
the generalized plant P(s) under the context of H∞ method is, in general, not the same
as the plant P (s) as discussed in previous sections, which represents a physical dynamical
system. Here, w represents the exogenous inputs, u represents the manipulated inputs,
z represents the error signals, and y represents the measured outputs. The inputs and
outputs are vector quantities so the H∞ method is generally applicable to systems with
multiple inputs and multiple outputs. The measured outputs y is the input of a feedback
regulator K(s), which outputs the manipulated signals u. The feedback regulator K(s)

is the quantity that is sought to be optimized. Again, K(s) is generally not the same as
the feedback controller K(s) mentioned in previous sections.

The generalized plant P(s) specifies the interconnection between the inputs [w, u]⊺

and the outputs [z, y]⊺. Under the open-loop condition, the input-output relation reads

[
z

y

]
= P(s)

[
w

u

]

=

[
P11(s) P12(s)

P21(s) P22(s)

][
w

u

]
,

(8.1)

where P11(s), P12(s), P21(s), and P22(s) are the partitioned elements of P(s) and are also
transfer function matrices in general. In closed-loop condition, the manipulated inputs
read

u = K(s)y . (8.2)

Rewriting y gives

y = P21(s)w + P22(s)u

= P21(s)w + P22(s)K(s)y

= [1− P22(s)K(s)]−1 P21(s)w

(8.3)

Substituting Eqn. (8.2) and (8.3) into Eqn. (8.1) yields an closed-loop error signal

z = P11(s)w + P12(s)u = P11(s)w + P12(s)K(s)y

= P11(s)w + P12(s)K(s) [1− P22(s)K(s)]−1 P21(s)w

=
{
P11(s) + P12(s)K(s) [1− P22(s)K(s)]−1 P21(s)

}
w ,

(8.4)

where
Fl(P,K) = P11(s) + P12(s)K(s) [1− P22(s)K(s)]−1 P21(s) (8.5)

is called the lower linear fractional transformation and it represents the closed-loop trans-
fer function matrix from w to z.
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To avoid the tediousness of writing the linear fractional transformation, let us define

G(s) ≡ Fl(P,K) (8.6)

as the closed-loop transfer matrix such that z = G(s)w. Now, the H∞ norm is defined as

∥G(s)∥∞ ≡ max
ω

σ̄(G(jω)) , (8.7)

where σ̄(G(jω)) is the maximum singular value of G(jω) 1. The maximum singular value
is a function of frequency and it can be expressed as

σ̄(G(jω)) = max
i

√
λi(G(jω)HG(jω)) , (8.8)

where λi(G
H(jω)G(jω)) denotes the ith eigenvalue of the matrix GH(jω)G(jω) and

GH(jω) is the conjugate transpose of G(jω). The H∞ problem is then to find a sta-
bilizing controller K∞(s) that minimizes Eqn. (8.7), i.e. the H∞ norm.

Now, theH∞ norm can be quite abstract as its interpretation depends on the definition
of the plant in question. For a system with single-input-single-output, such as the plant
P (s) representing the dynamics of a single degree of freedom of a suspension, the H∞

norm is simply the maximum gain of the magnitude response. In other words, the H∞

norm is the maximum magnification of a transfer function. Now, for a general multiple-
input-multiple-output system, there is no direct way of plotting the magnitude response
like the Bode plot since the plant would be a transfer function matrix. Instead, at each
frequency, the singular values of the transfer function matrix can be evaluated. The
maximum singular value is also the induced 2-norm of the transfer function matrix and
the induced 2-norm can be written as

σ̄(G(jω)) = max
∥w∥2 ̸=0

∥G(jω)w∥2
∥w∥2

= max
∥w∥2=1

∥G(jω)w∥2 , (8.9)

where ∥w∥2 denotes the vector 2-norm and is equal to
√∑n

i w
2
i and wi is the ith element

of the input vector w and n is the number of inputs. Note that ∥G(jω)w∥2 is also a vector
2-norm and it is equal to

√∑m
i z

2
i , where zi is the element of the output vector z and

m is the number of outputs. While the quantity
√∑m

i z
2
i is a measure of the size of the

output, it can be seen that the maximum singular value is a measure of the maximum
“amplification” of the transfer function matrix subjected to an input w in the worst di-
rection. Consequently, the H∞ norm is then a measure of the maximum “amplification”
of the transfer function matrix when subjected to an input in the worst direction at the

1Strictly speaking, the “max” (the maximum value) should be replaced by “sup” (the supreme, the
least upper bound). This is because there exists cases where the maximum can only be approached as
ω →∞, which cannot be realistically achieved [63]. For practical purposes, there is no difference between
“max” and “sup” so “max” is kept here for the purpose of simplicity.
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worst frequency. The fact that the H∞ is a measure of the peak magnitude of a transfer
function allows one to interpret it as the magnitude of the transfer function relative to
some specified bounds by introducing weighting functions in the generalized plant P(s)

[63]. For this reason, the generalized plant P(s) is not necessarily an interpretation of
a real system. Rather, the generalized plant implies cost function with specified perfor-
mance. This shall become important in later when considering optimal filter design in
Sec. 8.2.

8.1.2 Solving the H∞ problem

The H∞ problem is to find all stabilizing controllers K(s) that minimizes the H∞ norm
∥Fl(P,K)∥∞. The are many ways to approachH∞ optimal controllers, including Youla–Kucera
parametrization approaches [64, 65], Riccati-based approaches [66, 67], and linear matrix
inequality (LMI) approaches [68]. These methods are available in commercial packages
such as the Robust Toolbox in MATLAB and Control in Python [69]. The problems pre-
sented in later sections including Sec. 8.2 and 8.3 are solved using the control.hinfsyn()
function provided by the Python Control package [69]. The H∞ synthesis function is a
wrapper for the SLICOT library [70] (which stands for Subroutine Library In COntrol
Theory), which provides Fortran 77 implementations of numerical algorithms for com-
putations in control theory [71]. Of all the routines in SLICOT, the synthesis subroutine
SB10AD is used to find theH∞ optimal controller according to a specified generalized plant.
The subroutine is based on a Riccati approach in described in Ref. [67]. A summary of
the Riccati approach is given in Ref. [63] and it is re-elaborated in this section.

The idea of the Riccati approach is to first find all stabilizing controllers K(s) such
that

∥Fl(P,K)∥∞ < γ , (8.10)

where γ is a specified value such that

γ > γmin (8.11)

and γmin is the minimum possible value of ∥Fl(P,K)∥∞. This corresponds to finding
a sub-optimal solution to the H∞ problem, which is simpler than finding the optimal
solution directly [63]. Then, this process is iterated with decreasing value of γ until no
solution can be found. This indicates that the optimal solution is approached as γ < γmin.

To use the Riccati approach, it is more convenient to specify the generalized plant
in state-space representation rather than transfer matrix representation. Consider the
generalize plant in Fig. 8.1, the system is described by

ẋ = Ax+B1w +B2u , (8.12)
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z = C1x+D11w +D12u , (8.13)

and
y = C2x+D21w +D22u , (8.14)

where A, B1, B2, C1, C2, D11, D12, D21, D22 are matrices of the state-space model, x is the
internal states such as the displacement and velocity (not the same as the displacement in
previous sections), y is the measurement, z is the error signals, w is the exogenous inputs,
and u is the control variables. The state-space representation of the generalized plant is
then given by

P =



A B1 B2

C1 D11 D12

C2 D21 D22


 . (8.15)

The following assumptions about the plant are typically made

1. (A,B2) is stabilizable and (A,C2) is detectable. This is required for the existence
of a stabilizing controller.

2. D12 and D21 have full rank. This ensures the controller is proper and hence realiz-
able.

3.

[
A− jωI B2

C1 D12

]
has full column rank for all ω, and

4.

[
A− jωI B1

C2 D21

]
has full row rank for all ω. Combined with Assumption 3, this

ensures the optimal controller doesn’t cancel poles or zeros on the imaginary axis
which would result in instability.

5. D11 = D22 = 0. This simplifies the formulas of the algorithm.

6. D12 =

[
0

I

]
and D12 =

[
0 I

]
. For simplicity. This is achievable by a scaling of u

and y and a unitary transformation of z and w.

7. D⊺
12C1 = 0 and B1D

⊺
21 = 0. A common assumption in optimal control such as

Linear-Quadratic-Gaussian (LQG). The former means there is no cross term be-
tween the states x and the manipulated inputs u in the cost function. And, the
latter assumption means that the plant disturbance and measurement noise are
uncorrelated.

8. (A,B1) is stabilizable (A,C1) is detectable. If Assumption 7 holds, Assumptions 3
and 4 are replaced by this.
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Assumptions 1 and 8 are related to concepts of controllability and observability, which is
not discussed here. For testing of stabilizability and detectability, refer to tests like the
Popov-Belevitch-Hautus test [citation]. The major results are shown here. The Hautus
lemma for stabilizability states that a pair (A,B) is stabilizable if

rank
([
λi(A)I − A B

])
= n (8.16)

for all eigenvalues λi(A) with ℜ(λi(A)) ≥ 0, where n is the number of states such that
x ∈ Rn. The Hautus lemma for detectability stats that a pair (A,C) is detectable if

rank

([
λi(a)I − A

C

])
= n (8.17)

for all eigenvalues λi(A) with ℜ(λi(A)) ≥ 0.
Now, under these assumptions, there exists a stabilizing controller such that

∥Fl(P,K)∥∞ < γ under three conditions:

(i) X∞ ≥ 0 is a solution to the algebraic Riccati equation

A⊺X∞ +X∞A+ C⊺
1C1 +X∞

(
γ−2B1B

⊺
1 −B2B

⊺
2

)
X∞ = 0 (8.18)

such that the eigenvalues of [A+ (γ−2B1B
⊺
1 −B2B

⊺
2)X∞] have real parts lower than

0.

(ii) Y∞ ≥ 0 is a solution to the algebraic Riccati equation

AY∞ + Y∞A
⊺ +B1B

⊺
1 + Y∞

(
γ−2C⊺

1C1 − C⊺
2C2

)
Y∞ = 0 (8.19)

such that the eigenvalues of [A+ Y∞(γ−2C
⊺
1C1 − C⊺

2C2)] have real parts lower than
0.

(iii) The spectral radius of X∞Y∞ is less than γ2, i.e.

ρ(X∞Y∞) = max(λi(X∞Y∞)) < γ2 , (8.20)

where λi(X∞Y∞) denotes the eigenvalues of X∞Y∞.

All such stabilizing controllers can be written as a lower linear fractional transformation
K(s) = Fl(Kc, Q), where

Kc =




A∞ −Z∞L∞ Z∞B2

F∞ 0 I

−C2 I 0


 , (8.21)
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F∞ = −B⊺
2X∞, L∞ = −Y∞C⊺

2 , Z∞ = (I − γ−2Y∞X∞)−1, A∞ = A + γ−2B1B
⊺
1X∞ +

B2F∞+Z∞L∞C2, and Q(s) is any stable proper transfer function such that ∥Q(s)∥∞ < γ.
For Q(s) = 0, we get

K(s) = Kc11(s) = −F∞(sI − A∞)−1Z∞L∞ , (8.22)

which is called the central controller and it has the same states as the generalized plant
P(s). To apporach the optimcal contoller, the value of γ is needs to be updated in each
iteration. The value is updated based on a modified bisection algorithm called γ-iteration,
where the procedure continues until the smallest γ value that passed and the largest γ
value that failed is close within an acceptable tolerance [72].

8.2 Filter design problem as an H∞ problem

To use H∞ optimization, the control filter optimization problems must be expressed as
a generalized plant P(s) as shown in Fig. 8.1. After that, the optimal control filters can
be obtained numerically using H∞ synthesis using available software such as MATLAB
(which is proprietary) or Python Control [69] (which is open source and is used in this
work). In this section, the sensor fusion problem is first expressed as an H∞ problem in
Sec. 8.2.1. The sensor correction and feedback control problems are similar to the sensor
fusion problem, i.e. they are optimal trade-off problems with two conflicting objectives
as indicated by Eqn. (7.1), (7.8), and (7.18). They can be solved like a sensor fusion
problem. A few remarks regarding sensor correction and feedback control problems are
given in Sec. 8.2.2 and 8.2.3, respectively.

8.2.1 Sensor fusion problem

The method discussed here is largely inspired by the work in Ref. [57], which provides
the H∞ framework for shaping complementary filters according to frequency-dependent
constraints. The method is also documented in Ref. [73]. And, this subsection provides a
re-elaboration of the work.

To formulate the sensor fusion as an H∞ problem, the block diagram as shown in
Fig. 7.4 must be modified to impose the complementary condition H1(s) + H2(s) = 1.
With this constraint, the problem is really about optimizing one filter, H1(s) or H2(s),
and the other is automatically constrained as 1−H2(s) or 1−H1(s), respectively. Now,
it was shown that the sensor correction problem can be seen as a sensor fusion problem.
While the sensor correction configuration has only one filter to be optimized, this suggests
a modification the sensor correction block diagram in Fig. 7.6 for sensor fusion. By
comparing Eqn. (7.8) and (7.17), X(s) and Nrel(s) are the extra terms so they can be
removed from the block diagram. Matching the remaining terms suggests replacement
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of terms from Nseis(s) to N1(s), Xg(s) to −N2(s), and Hsc(s) to H1(s). Here, H1(s)

is selected for optimization and H2(s) is obtained via 1 − H1(s) later. Applying these
changes gives a modified sensor fusion block diagram shown in Fig. 8.2. In this case, the

Figure 8.2: Modified sensor fusion configuration from Fig. 7.6.

super sensor noise reads

Nsuper(s) = N2(s) + (N1(s)−N2(s))H1(s)

= H1(s)N1(s) + [1−H1(s)]N2(s) ,
(8.23)

which is exactly the same as Eqn. (7.8) with the complementary condition imposed.
Now, recall the definition of theH∞ norm in Eqn. (8.9), the inputs w of the generalized

plant are assumed to be normalized. This requires the sensor noises N1(s) and N2(s) to be
represented as frequency-dependent weightings in the plant. To achieve this, two transfer
function models N̂1(s) and N̂2(s) need to be shaped and fitted the amplitude spectral
densities of the noises SN1(ω) and SN2(ω) and a method and an example for such modeling
is already provided in Sec. 6.3.2. This gives |N̂1(jω)| ≈ SN1(ω) and |N̂2(jω)| ≈ SN2(ω).
In addition, two performance weightings W1(s) and W2(s), placed right after each input,
can be used to specify the required frequency-dependent attenuation of the sensor noises
N1(s) and N2(s) respectively. Adding the weights and noise models to the block diagram
in Fig. 8.2 and rearranging gives a generalized plant representation as shown in Fig. 8.3.
Here, the normalized exogenous inputs are w = [w1, w2]

⊺, the error signal is simply a
scalar z, the regulator is K(s) = [H1(s)] and the plant is

P(s) =

[
0 W2(s)N̂2(s) 1

W1(s)N̂1(s) −W2(s)N̂2(s) 0

]
. (8.24)

The gives a closed-loop transfer matrix from w to z of

G(s) =
[
H1(s)W1(s)N̂1(s) [1−H1(s)]W2(s)N̂2(s)

]
. (8.25)

With the closed-loop transfer matrix derived, it is a good opportunity to take a detour
and briefly discuss H2 optimization instead. The generalized plant in Fig. 8.3 is perfectly
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Figure 8.3: Generalized plant representation for sensor fusion.

compatible with H2 control. And, the H2 norm of the closed-loop transfer matrix is

∥G(s)∥2 =
√

1

2π

∫ ∞

−∞
tr [G(jω)G(jω)H] dω

=

√
1

2π

∫ ∞

−∞

∣∣∣H1(jω)W1(jω)N̂1(jω)
∣∣∣
2

+
∣∣∣[1−H1(jω)]W2(jω)N̂2(jω)

∣∣∣
2

dω .

(8.26)

Clearly, under the special case W1(s) = W2(s) = 1, the H2 norm is, with a factor of
2π, equivalent to the expected RMS value of the super sensor noise. This is worth noting
because, in some applications, the expected RMS is required to be minimized. In this case,
H2 synthesis would be superior to methods that use numerical optimization techniques
to design filters with fixed structure such as that in Ref. [59].

As for the H∞ case, the H∞ norm here is simply

∥G(s)∥∞ = max
ω

σ̄(G(jω))

= max
ω

(
max

i

√
λi(G(jω)HG(jω))

)
= max

ω

(
max

i

√
λi(G(jω)G(jω)H)

)

= max
ω

√∣∣∣H1(jω)W1(jω)N̂1(jω)
∣∣∣
2

+
∣∣∣[1−H1(jω)]W2(jω)N̂2(jω)

∣∣∣
2

.

(8.27)

With the special case W1(s) = W2(s) = 1, the cost function is simply the peak amplitude
spectral density of the super sensor noise, which is the quadrature sum of of the filtered
noise H1(s)N1(s) and [1 − H1(s)]N2(s). Minimizing such cost function may not be in-
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teresting because the peak amplitude spectral density is dominated by the low-frequency
noise of the inertial sensor and the noise features with much lower order of magnitude are
ignored. For active isolation systems in gravitational-wave detectors, the higher frequency
noise is also important even if they are orders of magnitude smaller than that at lower
frequencies.

Instead of the absolute magnitude of the noise spectrum, another useful quantity to
consider would be the amplification relative to the lower bound of the super sensor noise.
Eqn. (8.27) has a component in the form of a quadrature sum

√
a2 + b2, where a and b

are real numbers. When a and b has different values, the quadrature sum is typically
dominated either a or b so it can be approximated by max{a, b}, with a maximum factor
of
√
2 error in the case of a = b, which is insignificant in log-scale. In the case of sensor

fusion, the maximum error locates at the cross-over frequency of the two sensing noises,
which only occurs at one frequency. At other frequencies, the difference in the magnitude
of the sensing noises is typically measured by orders of magnitude (logarithmic scale).
Therefore, at most frequencies, the H∞ norm can be approximated as

∥G(s)∥∞ ≈ max
ω

(∣∣∣H1(jω)W1(jω)N̂1(jω)
∣∣∣
)

(8.28)

for |H1(jω)W1(jω)N̂1(jω)| > |[1−H1(jω)]W2(jω)N̂2(jω)| and

∥G(s)∥∞ ≈ max
ω

(∣∣∣[1−H1(jω)]W2(jω)N̂2(jω)
∣∣∣
)

(8.29)

for |H1(jω)W1(jω)N̂1(jω)| < |[1 − H1(jω)]W2(jω)N̂2(jω)|. Suppose the H∞ synthesis
computes the complementary filter H1(s) such that ∥G(s)∥∞ = γ, this yields an im-
portant result similar to that of a mixed-sensitivity H∞ control [63] where the optimal
complementary filters H1(s) and [1−H1(s)] gives

∣∣∣H1(jω)N̂1(jω)
∣∣∣ ≤ γ |W1(jω)|−1 (8.30)

and ∣∣∣[1−H1(jω)] N̂2(jω)
∣∣∣ ≤ γ |W2(jω)|−1 . (8.31)

Here, H1(s)N̂1(s) and [1−H1(jω)]N̂2(s) are the filtered sensing noises, and γ|W1(jω)|−1

and γ|W2(jω)|−1 are the upper bounds of the filtered noises. This indicates that the
weighting functions W1(s) and W2(s) can be used to specify inverse of the target spectral
shape of the two filtered sensing noises H1(s)N1(s) and [1 − H1(s)]N2(s). And, γ value
indicates the deviation of the super sensor noise from the specifications. Ideally, the super
sensor noise should approach the lower bound, which is given by min{|N̂1(jω)|, |N̂2(jω)|}.
To achieve this, the attenuation of one sensing noise N1(s) (or N2(s)) is optimal when it
is suppressed to the level of the other sensing noise N2(s) (or N1(s)). Further attenuation
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is unnecessary as the super sensor noise would be dominated by either one of them. This
gives the optimal weightings

W1(s) =
1

N̂2(s)
(8.32)

and
W2(s) =

1

N̂1(s)
. (8.33)

As can be seen, the weightings only depend on the sensing noises themselves. This is one
major advantage of the approach as it eliminates the design freedom the control filter,
which could give rise to inconsistency and sub-optimality.

Alternatively, if there exists requirements for the sensing noises, then the weighting
functions can be set to the inverse of the requirements, which is straightforward. However,
the requirement for the sensing noise of an active isolation system is usually not specified.
Rather, the control noise in terms of the displacement of the optics is usually specified.
The control noise depends on other parts of the control systems, such as the controller,
which has not been optimized yet. Therefore, the sensing noise requirements cannot be
specified directly from the control noise requirements.

It is worth noting that the weighting functions and the noise models in the generalized
plant need to be stable and proper. This is required by the general assumptions as stated
in Sec. 8.1.2 [63]. This restricts the transfer functions of the noise models N̂1(s) and N̂2(s)

need to be stable and proper. In addition, there are two more restrictions for the noise
models if the weights are set set according to Eqn. (8.32) and (8.33) since the reciprocals
are invoked. That is, they need to be minimum phase, meaning that they must contain
no zeros on the right-half plane. Also, the order of the numerator polynomial needs to be
the same as that of the denominator polynomial. This means that the transfer functions
N̂1(s) and N̂2(s) can only have flat frequency responses at low and high frequencies, i.e.
outside the frequency band of interests.

H∞ (and H2) sensor fusion of typical LVDT and geophone

To demonstrate the H∞ sensor fusion method, a sensor fusion configuration combining
the KAGRA typical LVDT and geophone are considered here. The typical noise spectrum
of the LVDT is

SLVDT(f) =

[(
10−2.07

f 0.5

)2

+

(
10−2.3

f 0

)2
] 1

2 µm√
Hz

(8.34)

and that of the geophone is

Sgeophone(f) =

[(
10−5.46

f 3.5

)2

+

(
10−5.23

f

)2
] 1

2 µm√
Hz

, (8.35)
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where SLVDT(f) and Sgeophone(f) are the amplitude spectral densities of the LVDT and
geophone noises respectively. These are obtained from the empirical noise model described
by Eqn. (6.72) and the values are obtained from Ref. [29] using a graphical method.
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Figure 8.4: Typical noise spectra and modeling of LVDT and geophone. Blue solid: LVDT
noise. Orange dashed: LVDT noise transfer function model. Green dash-dot: Geophone
noise. Red dotted: Geophone noise transfer function model.

These noise spectra are modeled as transfer functions to be used as N̂1(s) and N̂2(s)

in Fig. 8.3. The noise spectra and the models are shown in Fig. 8.4. Here, the method
described in Sec. 6.3.2 is used to model the LVDT and geophone noise spectra. The noise
spectra are modeled as ZPK models as an intermediate step using a global optimization
algorithm. The orders of the ZPK model are chosen to be 3 and 4 for LVDT noise
and geophone noise, respectively. The ZPK models are converted into transfer function
models, which are used as the initial guess for transfer function modeling using a local
optimization algorithm. Here, the frequency series of the noise spectra are generated in
log-space between 10−4Hz and 102Hz. But, for the actual modeling, the noise spectra
below 10−3Hz and above 10−1Hz, which indicated the frequency band of interest as an
example, are padded with the edge values of the noise spectra, as shown in Fig. 8.4.
This is to ensure that the noise models and their inverses are proper so that can be used
as weights W1(s) and W2(s) in Fig. 8.3. After fitting the transfer function models, all
unstable zeros and poles, if exist, are converted stable ones by negating their real parts.
As can be seen, the magnitude of the transfer function models fit the noise spectra well
within the frequency band of interest and are flat outside the frequency band of interest.

With the noise models obtained, the complementary filters (blue solid and orange
dashed) are optimized using the H∞ method as described above (Sec. 8.2.1). The final
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Figure 8.5: Complementary filters for sensor fusion of KAGRA typical LVDT and geo-
phone. Blue solid: H∞ low-pass filter for LVDT. Orange dashed: H∞ high-pass filter for
geophone. Green dash-dot: H2 low-pass filter for LVDT. Red dotted: H2 high-pass filter
for geophone.

H∞ norm in this case is γ = 4.82. The complementary filters for the sensor fusion of the
LVDT and geophone are shown in Fig. 8.5. Note that the actual complementary filter
synthesized is the LVDT low-pass filter (blue solid line). The geophone high-pass filter
(orange dashed line) is obtained via the complementary condition H2(s) = 1 − H1(s).
Both complementary filters have an order of 13.

The obtained complementary filters are use to predict the super sensor noise, which
is a quadrature sum of the two filtered noises H1(s)N1(s) and H2(s)N2(s), assuming that
they are uncorrelated. The result is denoted as H∞ super sensor noise (Green dash-dot
line) in Fig. 8.6. The noise models for LVDT and geophone are also shown in Fig. 8.6 as
blue solid and orange dashed curves, respectively. As can be seen, the super sensor noise
clearly attains the shape of the lower limit, indicating that both complementary filters
have critically roll-offed the sensor noises. The ratio between the super sensor noise and
the lower bound is averaged around 5.06, which is well within a factor of

√
2 of the H∞

norm (which is the aforementioned γ = 4.82).

Nevertheless, the same problem is solved using H2 synthesis with W1(s) = W2(s) = 1

as a illustration. This problem corresponding to minimizing the RMS value of the super
sensor noise. The H2 complementary filters (green dash-dot and red dotted) are also
shown Fig. 8.5 and the super sensor noise (red dotted) is shown in Fig. 8.6. As can be
seen, the H2 complementary filters look very different from the H∞ filters. The blending
frequency of the H2 complementary filters is at around 0.3Hz whereas that of the H∞

filters is around the cross-over frequency of the two sensor noises, i.e. ∼ 0.07Hz. The
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Figure 8.6: Sensor noise spectrum. Blue solid: LVDT noise. Orange dashed: Geophone
noise. Green dash-dot: H∞ super sensor noise.

H2 super sensor noise is similar to the LVDT noise, especially at frequencies where the
geophone noise dominates. This is due to the fact that H2 optimization tries to ignore the
geophone signals as the geophone noise has a much greater RMS value compared to that
of the LVDT. In this case, the H2 super sensor has not benefited form the excellent noise
performance of the geophone at high frequency. H2 synthesis with non-unity weights is
not illustrated here as the weightings do not carry special meaning as in the H∞ case.
This explains why the H∞ method is so unique.

8.2.2 Sensor correction problem

For sensor correction, the goal is to shape a sensor correction filter to attenuated the
seismometer noise at lower frequency such that it can be used to correct relative sensors
by partially removing the secondary microseism coupling at frequencies above 0.1Hz.
The sensor correction filter Hsc(s) is, conventionally, a high-pass filter representing the
atteunation of the seismometer noise Nseis(s). On the other hand, its complementary
counterpart [1 − Hsc(s)], which is a low-pass filter, represents the transmissivity of the
seismic noise Xg(s). The underlying problem can almost perfectly described by a sensor
fusion problem as described in Sec. 8.2.1. But, there is one subtle difference, that is, the
presences of an ambient noise, which is the intrinsic noise Nrel(s) of the relative sensor that
the scheme is trying to correct. The lower limit of the sensing noise of the corrected sensor
is actually max{min{|N̂seis(jω)|, |X̂g(jω)|}, |N̂rel(jω)|}, where N̂seis(s), X̂g(s), N̂rel(s) are
the transfer function models of the seismometer noise, seismic noise, and relative sensor
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noise, respectively. In constrast, the lower limit of the sensing noise in the sensor fusion
configuration is the simply minimum of the two sensor noises, min{|N̂1(jω)|, |N̂2(jω)|}.

Contrary to the conventional belief where the seismic noise transmissivity is believed
to be optimal when it is minimized, the seismic noise transimissivity does not have to
be zero. This means that the optimal sensor correction filter is not necessary flat at
unity at the pass band. When the seismic noise is suppressed to a level lower than the
relative sensor, the corrected sensor will have a noise dominated by the relative sensor
noise. Therefore, additional attenuation is not observable and does not improve the noise
performance where it is expected. While the seismometer noise is typically lower than the
relative sensor noise, the lower limit max{min{|N̂seis(jω)|, |X̂g(jω)|}, |N̂rel(jω)|} evaluates
to simply the relative sensor noise |N̂rel(jω)|. And, this sets the weighting function for
the seismic noise path to the inverse of the relative sensor noise.

The seismic noise Xg(s) can be difficult to estimate at frequencies lower than, say,
0.1Hz since the seismometer itself is used to estimate the seismic noise, which dominates
at low frequency. At such frequencies, there is no seismic isolation at all and the position
control actually tries to fix the suspension on the ground. Therefore, in this sense, sensor
correction is different from sensor fusion since the sensor correction filter is not optimal
when it suppresses the seismometer noise to the level of the seismic noise, which would
cause the suspension to drift relative to the ground. In the case of sensor correction,
it is safe to say that the target attenuation of the seismometer noise is such that it
approaches the relative sensor noise, not the seismic noise. Any suppression lower than
that is unnecessary since the noise of the corrected sensor will be dominated by the relative
sensor noise anyway. This also sets the weighting function for the seismometer noise path
to the inverse of the relative sensor noise model.

In short summary, the generalized plant representation for sensor fusion in Fig. 8.3 is
compatible with sensor correction and it can be used to representation the cost function for
optimizing sensor correction filter. In this case, several variables need to be replaced. The
sensor noises N̂1(s) and N̂2(s) are replaced by the seismic noise X̂g(s) and seismoemter
noise N̂seis(s), respectively. The weights W1(s) and W2(s) are set to the reciprocal of the
relative sensor noise, i.e. W1(s) = W2(s) = 1/Nrel(s). Note that, in KAGRA, the relative
sensor noise is equivalent to the LVDT noise (N1(s) in the example given in Sec. 8.2.1).
It is worth noting that setting equal weights is equivalent to having a single weight for
the error signal z in Fig. 8.3, which corresponds to the target specification the noise
of the corrected sensor. Nevertheless, the filter H1(s) is replaced by the seismic noise
transmissivity 1 − Hsc(s) and the optimized sensor correction filter is obtained via the
complementary condition. The demonstration of the optimization of the sensor correction
filter is given in the result section Sec. 8.3.
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8.2.3 Feedback control problem

For active isolation systems, the goal of the feedback control is to design an optimal con-
troller K(s) that suppresses the system disturbance D(s) while attenuating the sensing
noise N(s), which are conflicting objectives. The displacement of an active isolation sys-
tem is what needs to be minimized. It is described by Eqn. (7.1) and is perfectly analogous
to the noise of the super sensor, Eqn. (7.8), in a sensor fusion configuration. This means
that the generalized plant in Fig. 8.3 can also be used to optimized feedback controllers
that seek optimal trade-off between disturbance rejection and noise attenuation. In this
case, the sensor noises N̂1(s) and N̂2(s) are replaced −N̂(s) and disturbance D̂(s), re-
spectively, where N̂(s) is the sensing noise model and D̂(s) is the disturbance model. As
for the weights, W1(s) and W2(s), they are set to the inverse of the disturbance and the
inverse of the sensing noise models, respectively. H∞ synthesis then gives the optimal
complementary sensitivity T (s) ≡ K(s)P (s)/[1 + K(s)P (s)] and the optimal controller
can be obtained via

K(s) =
1

P (s)

T (s)

1− T (s) , (8.36)

where T (s) is the complementary sensitivity function optimized by the H∞ method and
P (s) is the mechanical transfer function from actuation to displacement of the suspension.
Alternatively, the disturbance model D̂(s) and the noise model N̂(s) can be swapped, in
which case the H∞ method optimizes the sensitivity function S(s) ≡ 1/[1 + K(s)P (s)]

and the optimal controller can be obtained via

K(s) =
1

P (s)

1− S(s)
S(s)

. (8.37)

Treating the feedback control problem as a sensor fusion problem indeed allows the con-
troller to be optimized like complementary filters. But, the feedback control problem is
so important and popular in control theory that it deserves a standalone discussion.

In fact, the H∞ method is developed based on a robust stabilization of a multivariable
feedback system and the H∞ optimization of controller that guarantees control perfor-
mance is well studied [63]. The complementary filter shaping method proposed in Ref. [57]
is, in fact, equivalent to the S/T mixed-sensitivityH∞ control in Ref. [63]. The generalized
plant for an S/T mixed-sensitivity problem is shown in Fig. 8.7. In the mixed-sensitivity
problem, the goal is to shape the sensitivity functions S(s) and T (s) (or other sensitivity
functions) to achieve desired closed-loop performance. In Fig. 8.7, the H∞ norm of the
plant is ∥∥∥∥∥

[
WS(s)S(s)

WT (s)T (s)

]∥∥∥∥∥
∞

, (8.38)

whereWS(s) andWT (s) are some weighting functions. To restate, the sensitivity functions
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Figure 8.7: S/T mixed-sensitivity generalized plant.

S(s) and T (s) are defined as

S(s) ≡ 1

1 +K(s)P (s)
(8.39)

and
T (s) ≡ K(s)P (s)

1 +K(s)P (s)
. (8.40)

With the sensitivity functions defined, the displacement of a feedback controlled suspen-
sion in Eqn. (7.1) can be rewritten as

X(s) = S(s)D(s)− T (s)N(s) . (8.41)

Again, the controller in the generalized plant in Fig. 8.7 is such that
∥∥∥∥∥

[
WSS(s)

WTT (s)

]∥∥∥∥∥
∞

< γ . (8.42)

This corresponds to having
|S(jω)| < γ |WS(jω)|−1 , (8.43)

and
|T (jω)| < γ |WT (jω)|−1 , (8.44)

where γ is the minimum H∞ norm, and the right hand side of the inequalities denotes the
frequency-dependent upper bound of the sensitivity functions. Hence, the weighting func-
tions WS(s) and WT (s) can be used to specified the desired loop shape of the sensitivity
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functions S(s) and T (s). While S(s) and T (s) are the coupling terms of the disturbance
D(s) and sensing noise N(s) in Eqn. (8.41), the mixed-sensitivity loop-shaping technique
effectively allows one to shape the frequency response of disturbance rejection and noise
attenuation.

The mixed-sensitivity setting is equivalent as the complementary filter shaping tech-
nique as discussed in Ref. [57] with the sensitivities substituted by the complementary
filters. One problem with this configuration is that there exists design freedom, which is
the weighting functions. Classically, this is the way mixed-sensitivity problems are meant
to be tackled, assuming that the control designer knows what are the desired loop shape
of the sensitivities. But, if there are no specific requirements on the control performance,
the weighting functions can be ambiguous and it is not obvious what the optimal weights
are, simply by inspecting the mixed-sensitivity generalized plant. By setting up the sen-
sor fusion problem in Fig. 8.3, this problem has been solved by introducing noise models
N̂1(s) and N̂2 (which are actually weights) and performance weightings W1(s) and W2(s)

into the plant. This is similar to the signal-based H∞ control in Ref. [63] where multiple
weights are used to characterized the frequency content of input signals and closed-loop
performance of a feedback system. In such case, the selection of weights are obvious and
intuitive, as discussed in Sec. 8.2.2.

Like sensor fusion, a equivalent generalized plant can be defined for the feedback
control system in Fig. 5.5. The generalized plant is shown in Fig. 8.8. The approach is

Figure 8.8: Generalized plant representation for feedback control system.

actually identical to the that described in the beginning of this section where the sensor
fusion plant is used as an analogy. In this case, the actuation plant P (s) is embedded into
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the generalized plant P(s) and the H∞ method optimizes the controller K(s) directly.
The generalized plant in this case reads

P(s) =

[
WD(s)D̂(s) 0 P (s)

−WD(s)D̂(s) −WN(s)N̂(s) −P (s)

]
, (8.45)

where WD(s) and WN(s) are weighting functions that denote the target noise level of the
disturbance D(s) and noise N(s), and again, D̂(s) and N̂(s) are the transfer function
models of the disturbance and the sensing noise, respectively. The closed-loop transfer
matrix is

G(s) =
[

1
1+K(s)P (s)

WD(s)D̂(s) − K(s)P (s)
1+K(s)P (s)

WN(s)N̂(s)
]
. (8.46)

The cost function is identical that in the sensor fusion case with the variables substituted
accordingly. A similar analysis would show that the weighting functions are optimal
when WD(s) = 1/N̂(s) and WN(s) = 1/D̂(s) such that the optimal controller gives an
closed-loop displacement that is close to the lower limit at all frequencies.

It is worth mentioning that so far the feedback control problem has been treated as
a disturbance rejection and noise attenuation problem. Indeed, under this setting, feed-
back controllers in active isolation systems can be optimized to achieve seismic isolation
while minimizing control noise, which could contaminate the gravitational-wave detection
readout. However, recall in Sec. 6.4, one purpose of the controller is to coarsely align the
optics by regulating the displacement to a reference position R(s). The position setpoint
is a static value at DC. In Sec. 6.4.2, it is discussed that the corresponding controller that
can achieve position control is an integral controller ki/s, which could be missing in the
H∞-optimal controller for the generalized plant in Fig. 8.8.

There are several ways to remedy the lack on integral action in the H∞ controller.
First of all, if the H∞ controller has a flat response at with 0◦ phase at low frequency, the
controller can be modified by multiplying a pre-compensator (s+ ω0)/s. The magnitude
response of the resulting controller is bend with a slope of 1/ω at frequencies lower than ω0,
which corresponds to an integral action in the control. Roughly speaking, the integration
time constant is inverse of the unity gain frequency of low frequency asymptote of the open-
loop transfer function (the bent section corresponding to the intergral action) Therefore,
the ω0 can be chosen to meet time constant requirement. If the open-loop transfer function
with the H∞ controller does not have a flat response with 0◦ phase at low frequency, the
control designer must design a pre-compensator that converts the loop shape such that
the integral term dominates at low frequency. However, this requires experience and the
selection of the pre-compensator can vary a case by case and is not further discussed here.

Alternatively, one can choose to include the position control objective in the H∞

problem such that the optimization yields a controller that provides the required loop
gain at low frequency. The S/T mixed-sensitivity setting in Fig. 8.7 can also be used to
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solve, not just disturbance rejection and noise attenuation problems, but also tracking and
noise attenuation problems [63]. This is because the coupling term of the reference R(s)
in Eqn. (5.1) is also the complementary sensitivity T (s) = K(s)P (s)/[1 +K(s)P (s)]. In
order for the control system to track R(s) at low frequency, the complementary sensitivity
needs to be as close to unity as possible. While the complementary sensitivity weighting
WT (s) may be used already to specify noise attenuation requirement, the sensitivity weight
WS(s) can be used instead. As the complementary sensitivity approaches unity T (s)→ 1,
the sensitivity approaches zero S(s) → 0 as they are complementary. This means that
for the low frequency tracking performance due to an integral action can be specified by
setting the sensitivity function with an term proportional to the integrator 1/s. However,
as mentioned previously, the weightings in the generalized plant must be all be stable.
This means that the integrator must be instead approximated with 1/(s+ϵ), where ϵ≪ 1

[63]. This results in a loop shape that practically behave like integrator at low frequency
but is flat at frequencies below ω = ϵ. Similarly, in the signal-based setting in Fig. 8.8,
the product of the weightings WD(s)D̂(s), which is equivalent to WS(s), can be used to
specify the tracking requirement by introducing a pre-compensator (s+ ω0)/(s+ ϵ). Yet
another alternative is to introduce an additional path in Fig. 8.8 corresponding to the
reference R(s) with a dedicated weight WR(s). However, this greatly complicates the
design of the weighting functions and therefore is not discussed here.

The H∞ controller can be difficult to implement in reality since the central controller
attains the same number of states of the generalized plant. While high-order transfer
functions are required to capture the frequency content of the disturbance and sensing
noise, this could result in high-order controllers which is impractical [63]. Therefore, actual
implementation of H∞ controllers may need post-processing such as model reduction.
To exemplify the H∞ control method for active isolation systems in gravitational-wave
detectors, it is worth illustrating the method with a simpler system such as a simple
pendulum as follows.

H∞ control of a simple pendulum

In this subsection, the signal-based H∞ control is used to optimize the controller with
position control2 for a simple pendulum. The H∞ control is compared to the PID control
method described in Sec. 6.4. Consider a simple pendulum, such as that shown in Fig. 5.4,
that has actuation plant described by

P (s) =
ω2
n

s2 + ωn

q
s+ ω2

n

. (8.47)

2Without position control, the result would be similar to that of the sensor fusion in Sec. 8.2.1, which
is not worth reiterating.
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Here, there resonance frequency ωn is chosen to be 2π × 0.08 rad/sec and the quality
factor is chosen to be q = 10, which are both realistic values for inverted pendulums for
KAGRA type-A or type-B suspensions. For simplicity, suppose the platform suspending
the pendulum is subjected to a random motion described by a unit white noise, this gives
a disturbance model of D̂(s) = P (s). This can be realistic as the upper stage of the
pendulum is over-damped so the displacement of the upper stage approaches the sensor
noise, which can be white in reality. And, for simplicity, let us also assume that the
measurement noise of the pendulum displacement is also a unity white noise, this gives a
noise model of N̂(s) = 1. The spectral shapes of the disturbance (blue solid) and noise
(orange dashed) are shown in Fig. 8.9.
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Figure 8.9: Spectrum of the exogenous inputs. Blue solid: Disturbance D̂(s). Orange
dashed: Noise N̂(s).

It is optimal when the disturbance is suppressed to the level of the sensing noise
and vice versa. This gives optimal weightings WD(s) = 1/N̂(s) and WN(s) = 1/D̂(s)

as discussed. However, the choice of this disturbance model is not valid for the weight
since the reciprocal is not a proper transfer function. For the purpose of synthesis, the
disturbance model is actually chosen to be D̂(s) = P (s)(s/ωd + 1)2, where ωd = 2π ×
100 rad/sec is arbitrarily chosen to be practically high enough while not altering the
dynamics around the frequency band of interest. Now, to achieve position control, a
multiplicative factor (s+ω0)/(s+ϵ) is added to the disturbance weight such that WD(s) =

(s + ω0)/[N̂(s)(s + ϵ)]. The choice of the values ω0 and ϵ is described later. With the
weights, noise models, and actuation plant, the generalized plant for a signal-based H∞

control in Fig. 8.8 is fully defined and the H∞-optimal controller is synthesized. The
minimum H∞ norm in this case is γ = 1.776.
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A PID controller with a low-pass filter is also tuned according to the plant P (s) using
methods in Sec. 6.4. For a better comparison, the order (= 1) of the low-pass is chosen
such that it matches the roll-off of the H∞ controller. The low-pass is optimized for a 45◦

phase margin. Similarly, the choice of the ω0 value (= 0.3) is chosen to roughly match
the integral action in the PID controller. And, ϵ is arbitrarily chosen to be 10−6, which is
practically low enough to approximate an integrator.
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Figure 8.10: (a) and (c): Open-loop transfer function (magnitude and phase). Blue solid:
PID control. Orange dashed: H∞ control. (b) and (d): Controller (magnitude and phase).
Blue solid: PID controller. Orange dashed: H∞ controller.

The PID and the H∞ controller along with the corresponding open-loop transfer func-
tions K(s)P (s) are shown in Fig. 8.10. As can be seen, the PID and the H∞ controllers
share some similarity, with the PID control attaining a higher gain above ∼ 0.03Hz. This
difference arose from the fact that the H∞ method takes into account the relative magni-
tude and make optimal trade-off between the disturbance and noise. In contrast, the PID
tuning procedure does not take these exogenous inputs into account and only optimized
for critical damping. In both cases, the gain margins are ∞. This phase margins of the
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PID control and the H∞ control are 45◦ (which is designed) and 49.93◦, respectively. In
this case, both systems have similar stability properties.
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Figure 8.11: Closed-loop displacement spectrum. Blue solid: PID control. Orange dashed:
H∞ control. Black dash-dot: Disturbance. Black dotted: Noise.

The predicted closed-loop displacement spectra for the PID control (blue solid) and
H∞ control (orange dashed) are shown in Fig. 8.11. The raw disturbance (black dash-dot)
and the measurement noise (black dotted) are also plotted as references. As can be seen,
both controller suppressed the peak of the disturbance reasonably well. As expected, the
displacement spectrum of the H∞ control follows the the lower limit with a maximum
amplification roughly equal to the H∞ norm. This has important implications for active
isolation in gravitational-wave detectors:

1. The passive isolation performance (denoted by the shape of the disturbance) is not
ruined by theH∞ control as it pushes the control noise towards the passively isolated
displacement, and

2. The disturbance is active suppressed towards the sensing noise, which maximizes
the potential of the sensors.

This is exactly what is required for active isolation in gravitational-wave detectors. On
the other hand, in the case of PID control, the roll-off of the sensing noise is similar to
that of the H∞ control as the order of the low-pass filter is informed by the H∞ controller.
However, even so, the noise attenuation is not as good and the closed-loop displacement of
the PID control appears to be amplified at high frequency compared to the H∞ controller.

Nevertheless, in the beginning of the section, it is mentioned that the H∞ needs to be
able to achieve alignment control (hence the modified weight WD(s) = (s+ω0)/[N̂(s)(s+
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Figure 8.12: Closed-loop unit step response. Blue solid: PID control. Orange dashed:
H∞ control.

ϵ)]). This introduces integral action in the H∞ control at low frequency as shown in
Fig. 8.10. Fig. 8.12 shows the simulated closed-loop unit step response of the PID control
and H∞ control. As can be seen, both systems settle at the setpoint at around t = 30 s.
This shows the H∞ control can be used for coarse alignment like a PID controller.

8.3 H∞ optimization of the SRM pre-isolator control

filters

The H∞ methods discussed in Sec. 8.2 are tested with the KAGRA SRM suspension.
The H∞ optimization of several configurations are presented here. In Sec. 8.3.2, the
complementary filters for the sensor fusion of the LVDT and geophone at the preisolator
are presented. The sensor correction of the pre-isolator LVDT using the seismometer
placed near the IXV is shown in Sec. 8.3.3. With the corrected sensor, the complementary
filters need to be re-optimized and the configuration with both sensor correction and
sensor fusion is discussed in Sec. 8.3.4. For all sensor configurations above, the open-loop
performances are evaluated and compared, individually, against the KAGRA super sensor
or (and) the KAGRA sensor correction, which are both described in Sec. 8.3.1. The closed-
loop performance is given in in Sec. 8.3.5 along with a short summary regarding the sensor
configurations. Finally, in Sec. 8.3.6, H∞ control of the pre-isolator is demonstrated.
For all configurations, unless otherwise specified, the corresponding degree of freedom is
the longitudinal direction of the pre-isolator table, which is suspended by the inverted
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pendulum. In Sec. 8.3.1, some basic information regarding the SRM pre-isolator is given,
including the transfer function, default control filters, and sensor noises.

8.3.1 The SRM pre-isolator

The plant and the baseline PID controller
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Figure 8.13: SRM longitudinal pre-isolator actuation frequency response. (a) Magnitude
response. (b) Phase response. Blue solid: Measurement data. Orange dashed: Transfer
function model.
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Fig. 8.13 shows the SRM pre-isolator longitudinal frequency response from actuation
to displacement (measured by LVDTs). The transfer function model is shown as orange
dashed line in the figure and it is obtained using method discussed in Sec. 6.3.1. As can
be seen, four main resonances can clearly be observed at ∼ 0.06Hz, ∼ 0.067Hz, ∼ 0.4Hz,
and ∼ 0.67Hz.
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Figure 8.14: SRM pre-isolator longitudinal open-loop transfer function and baseline con-
troller. (a) and (c): Open-loop transfer function (magnitude and phase). (b) and (d):
Controller (magnitude and phase).

The baseline controller for the SRM pre-isolator longitudinal degree of freedom is a
PID controller with fourth-order low-pass post filtering. The controller is designed using
methods in Sec. 6.4 according to the transfer function model. The open-loop transfer func-
tion and the controller is shown Fig. 8.14. The fourth-order low-pass filter has a cut-off
frequency of 3.6Hz. The gain and phase margins are 5.48 (14.78 dB) and 48.96◦, respec-
tively. Unless otherwise specified, the PID controller is used for closed-loop measurements
in below sections.
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Seismic and sensor noises
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(a) SRM pre-isolator LVDT 1 and geophone 1 noises
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(b) SRM pre-isolator LVDT 2 and geophone 2 noises
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Figure 8.15: SRM pre-isolator LVDT and geophone noises. (a): LVDT 1 and Geophone
2. (b) LVDT 2 and geophone 2. (c) LVDT 3 and geophone 3. Blue solid: LVDT readout
(pre-isolator locked). Orange dashed: Geophone readout. Green dash-dot: LVDT noise
empirical model. Red dotted: Geophone noise empirical model.

Three LVDTs and three geophones are installed on the pre-isolator, each sensing a
tangential displacement/velocity of the pre-isolator. The sensor noises of each sensor
and their empirical models are shown in Fig. 8.15. Here, the empirical models are ob-
tained using the frequency spectrum modeling methods discussed in Sec. 6.3.2 and the
corresponding empirical model is Eqn. (6.72). For the LVDTs, the noise spectral was
obtained by taking a measurement of the LVDT readouts when the pre-isolator table was
locked relative to the ground. As for the geophones, the data was a measurement of the
geophone readouts when the pre-isolator table was unlocked. For this reason, some reso-
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nances can be observed from the spectral. To compensate for this, the weighting function
in Eqn. (6.71) for modeling the noise spectrum of a geophone is set such that the weight
is 0 when the coherence between any of the two geophones is higher than 0.5 and is 1
otherwise. Geophone data higher than 10Hz are also ignored.

For each type of sensors, the three sensors are separated horizontally with 120◦ spac-
ing along a common circumference on the pre-isolator table, each sensing the tangential
motion of the table. To convert the individual sensor noises to the effective sensor noises
in the longitudinal direction, the sensing matrices of the LVDTs and the geophones need
to be invoked. The amplitude spectral density of the longitudinal sensor noise of one type
of sensor can be obtained via the quadrature sum

NL(f) =

(
3∑

i=1

[SLiNi(f)]
2

) 1
2

, (8.48)

where NL(f) is the effective amplitude spectral density of the sensor noise in the lon-
gitudinal direction, SLi is the ith element of the longitudinal row of the sensing matrix,
and Ni(f) is the amplitude spectral density of the ith sensor. Note that SLi for LVDTs
and geophones are in general different because they are placed differently. The converted
noise spectral for LVDT and geophone noises in the longitudinal direction is shown as
blue solid and orange dashed curves in Fig. 8.17, respectively.
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Figure 8.16: IXV seismometer noise (Y-arm direction). Blue solid: Readout. Orange
dash-dot: Empirical model.

The seismometer placed at the IXV (second floor of the ITMX chamber) is considered
to be a ground sensor in close proximity to the SRM suspension (both located in the corner
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area of the interferometer). At low frequency, it measures a common ground motion that
is disturbing the SRM suspension and therefore can be used for sensor correction. The
IXV seismometer readout measuring the seismic noise along the Y-arm direction of the
interferometer (SRM is roughly aligned with the Y-arm direction.) is shown as blue solid
line in Fig. 8.16. For the purpose of modeling, data at above 0.04Hz are believed to be
dominated by seismic noise and are ignored. The empirical model is then simply in the
form of Na/f

a, where Na and a are the model parameters. The fitting empirical model is
shown as orange dashed line in Fig. 8.16.
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Figure 8.17: SRM pre-isolator longitudinal noises. Blue solid: LVDT noise (empirical
model). Orange dashed: Geophone noise (empirical model). Green dash-dot: IXV seis-
mometer noise (empirical model). Red dotted: KAGRA mean seismic noise.

In Fig. 8.17, a compilation of noises in the SRM pre-isolator longitudinal are shown.
This includes the empirical models of the LVDT noise (blue solid), geophone noise (orange
dashed dot), and the IXV seismometer noise (green dash-dot). The mean seismic noise in
KAGRA taken from Fig. 7.2 is also shown. These noises are important in later sections
as the transfer function models for H∞ synthesis in later sections are largely based on
these four noises. Transfer function models for each noise could vary depending on the
application and they shall be specified later.

KAGRA complementary filters and sensor correction filters

During the two-week joint observing run with KAGRA and GEO600 (O3GK), a gravitational-
wave detector in Germany, KAGRA has suffered from high seismic activity [74, 24]. This
has eventually limited the duty cycle of the detector to only 54% [24]. At the time,
KAGRA’s suspensions had no active isolation capability and this was due to the tight
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commissioning schedule. For O3GK, the pre-isolators of the suspensions only use LVDTs,
which couples perfectly to seismic noise, for damping of the resonances. Therefore, it is
no surprise that the KAGRA became susceptible to seismic disturbances.

Before O3GK, it was concluded that the low-frequency noise of the geophones on the
pre-isolator is too high for them to be implemented in a sensor fusion configuration for
inertial damping (damping with respective to an inertial frame). To elaborate, the cross-
over frequency of between the LVDT and geophone noise is close to ∼ 0.2Hz in Fig. 8.17,
which is much higher than the expected∼ 0.07Hz in Fig. 8.4. This forces a higher blending
frequency of the complementary filter, which could potentially amplify the secondary
microseism coupling in the LVDT readout, leading to an adverse effect. Therefore, the
focus for active isolation was switched to using a sensor correction configuration. The
pioneer studies of sensor correction in KAGRA is given in Ref. [31] and it was shown that
the secondary microseism can be suppressed and that the sensor correciton scheme can be
a feasible solution to the active isolation problem. However, due to a lack of experience,
the sensor correction filter used for the study is not properly design to attenuate the low-
frequency noise of the seismometer. This caused low-frequency drift of the pre-isolator
table when sensor correction is engaged [58] and therefore is not used during O3GK. The
particular sensor correction filter is shown in subplot (a) in Fig. 8.18. As can be seen, it
has a ∼ 3 times amplification around 0.013Hz and a passband above that.
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Figure 8.18: (a): KAGRA sensor correction filter. Blue solid: sensor correction filter.
Orange dashed: seismic transmissivity. (b) KAGRA complementary filter. Blue soild:
LVDT filter (low-pass) Orange dashed: Geophone filter (high-pass).

To remedy the issue of lacking active isolation, inertial damping was brought back
during the pre-O4 commissioning [75]. As part of the suspension system unification3, a
common set of complementary filters was simply set for all suspensions for the sensor
fusion of LVDT and geophone. In Fig. 8.18, the KAGRA complementary filters are

3Different types of suspensions have very different control topologies back in O3.
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shown in subplot (b). And, this set of filters is intended to be used during O4. The
complementary filters were obtained from Ref. [28] and they are described by Eqn. (7.11)
and (7.12), with nl = nh = 3. The blending frequency (for longitudinal and transverse
direction) was set to 0.08Hz.

Miscellaneous remarks

The H∞ filters that are presented in later sections are benchmarked against the original
KAGRA complementary filters and sensor correction filter shown in Fig. 8.18. The per-
formance will be compared in several ways. This include comparing the spectra of the
super sensor readouts and sensor correction readouts during frees wing of the pre-isolator
table. These sensors are also compared in a closed-loop condition where the controller
in Fig. 8.14 is engaged. In such case, the optical lever at the optics stage is used as an
out-of-loop sensor to monitor the motion of the optics.

It should be noted that, in reality, the geophone signals need to be pre-filtered by
high-pass filters to avoid the overflow of digital signals. For KAGRA geophones, the
geophones signals are pre-filtered by a fourth-order high-pass filter with a cut-off frequency
at 0.003Hz. Therefore, signals involving the geophone measurements be appeared to be
rolled off below that frequency. With the pre-filtering, the complementary condition of
the complementary filters is no longer valid. This gives a super sensor that has a distorted
frequency response around the blending frequency. Therefore, the pre-filters must be taken
into account and the complementary filters need to be adjusted accordingly. Refs. [28, 61]
provide one way of “normalizing” the complementary filters but the resulting filters may
have excessive noise amplification around the blending frequency. The treatment of pre-
filtering is to be discussed in Sec. 9.1.2. But, it should be noted that the actual H∞

complementary filters implemented in the system are treated in some way to retain the
complementary condition. Hence, the H∞ super sensor noise might not behave exactly
like that in the simulation, but is slightly higher noise at higher frequencies. On the other
hand, the KAGRA complementary filters are not treated so the KAGRA super sensor
has a distorted frequency response around the blending frequency in reality.

It is worth clarifying one performance index that is commonly used for evaluating the
“size” of a signal, that is, the root mean square (RMS) value. The expected RMS value of
a signal can be obtained by integrating its entire power spectral density with respect to
frequency and then taking the square root of that value. This gives the an expected RMS
value of the signal. For active isolation systems, and for subsystems in a gravitational-
wave detector in general, signals can have very different order of magnitude at different
frequencies. In most cases, the amplitude of a signal at high frequency is much lower than
that at low frequency. This means that the RMS value is typically dominated by the low
frequency components so the high frequency components are not well represented. To
remedy this, integrated RMS SRMS(f) is introduced as a function of frequency, and it is
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defined as

SRMS(f) =

[∫ ∞

f

SASD(f
′)2 df ′

] 1
2

, (8.49)

where SASD(f) is the amplitude spectral density of a signal. The integrated RMS is
meant to be viewed from high frequency to low frequency and it shows how the RMS
value gets accumulated, which would be useful for identifying RMS contributions from
high frequency components. The terms RMS and integrated RMS are sometimes used
interchangeably since they can be easily distinguished (RMS is a value whereas integrated
RMS is a function of frequency).

Here are some disclaimers regarding the results in later sections. First of all, the
comparison only yields relative performance. Therefore, the results do not evaluate the
optimality of the control filters. Performance indices, such as the RMS value of a sensor
signal, do not necessarily translate to real performance such as lock stability of the in-
terferometer. To test the active isolation performance, all control filters of all suspension
must be changed for a sufficient long period during the observation where metrics such as
number of lock-losses per number of earthquakes can be observed and compared. These
tests maybe too costly to be conducted for current KAGRA in such an early stage where
robustness is pursued.

8.3.2 H∞ sensor fusion

In this section, the H∞ sensor fusion using the LVDT and the geophone is demonstrated.
In this case, the LVDT is measuring relative displacement of between the pre-isolator and
the ground. Therefore, the seismic noise is considered as part of the sensing noise in the
LVDT readout. To use theH∞ method for sensor fusion in Sec. 8.3.2, the sensing noises of
the LVDT and the geophone need to be modeled as transfer functions. For the geophone
noise, the modeling is straightforward, as shown in sec. 6.3.2. As for the seismic noise
coupled LVDT sensing noise, it is not simple since the seismic noise need to be estimated
from a seismometer readout. The seismometer readout at low frequency, especially below
∼ 0.1Hz, is dominated by the seismometer noise, as shown in Fig. 8.17. This makes
seismic noise at low frequency hard to estimate. As a simple estimation, the seismic noise
in Fig. 8.17 is processed as follows. At frequencies lower than the local minima around
∼ 0.1Hz, the values are replaced with the value of the minima, flattening the spectrum
at lower frequencies. This adds the secondary microseismic peak to the LVDT noise. The
quadrature sum of the processed seismic noise and the LVDT noise is modeled as the
sensing noise with a transfer function for the purpose of H∞ synthesis.

The modeled noises are used to optimized complementary filters via H∞ synthesis.
The minimum H∞ norm for this case is γ = 7.055, meaning that the super sensor noise
has an amplification 7.055 times above the lower boundary. TheH∞ complementary filters
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Figure 8.19: H∞ complementary filters for the sensor fusion of the seismic noise coupled
LVDT and the geophone of the SRM pre-isolator in the longitudinal direction. Blue solid:
Seismic noise coupled LVDT filter (low-pass). Orange dashed: Geophone filter (high-pass)

are shown in Fig. 8.19. As shown in the figure, the low-pass filter has a clear difference
compared to KAGRA complementary low-pass filter shown in subplot (b) of Fig. 8.18.
That is, there exists a notch-like feature in theH∞ around the secondary microseism. This
gives a ∼ 10 times attenuation at 0.2Hz and, in comparison, the KAGRA complementary
filter only offers ∼ 2.5 times attenuation around the microseism. A similar feature is also
engineered in the example Virgo complementary filter shown in Ref. [27] for the purpose of
providing additional suppression to the microseism. However, the Virgo complementary
filters are only given as an example and it was not entirely how the filter design was
approached. In contrast, the H∞ method automatically generates the necessary features
that are required to properly filter the sensing noises. The notch-like feature in H∞

low-pass filter in Fig. 8.19 was naturally created as a result of optimization.

The complementary filters are used to estimated the super sensor noises. The KAGRA
super sensor noise (green dash-dot) and the H∞ super sensor noise (red dotted) are
shown in Fig. 8.20 together with the original seismic noise coupled LVDT and geophone
sensing noise models (blue solid and orange dashed, respectively). The amplitude spectral
densities of the noises are shown in subplot (a) and the integrated RMS of the noises are
shown in subplot (b). Note that the RMS of the geophone noise is not shown since it has
a much larger value than the others and it is not an important value.

In comparison, the KAGRA super sensor has poorer noise performance compared
to the H∞ super sensor. As can be seen, at frequencies below 0.05Hz, the amplitude
spectral density of the KAGRA super sensor is around an order of magnitude higher
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(a) SRM pre-isolator longitudinal sensor noise spectrum

Seismic noise coupled LVDT (model)

Geophone (model)

KAGRA super sensor (estimated)

H∞ super sensor (estimated)
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(b) SRM pre-isolator longitudinal sensor noise (RMS)

Seismic noise coupled LVDT (model)

KAGRA super sensor (estimated)

H∞ super sensor (estimated)

Figure 8.20: Sensor noise and estimated super sensor nosies in the SRM pre-isolator
longitudinal direction. (a) Amplitude spectral density. (b) RMS. Blue solid: Seismic
noise coupled LVDT. Orange dashed: Geophone. Green dash-dot: KAGRA super sensor.
Red dotted: H∞ super sensor.

than that of the H∞ super sensor. This indicates that the KAGRA complementary
high-pass filter does not filter the geophone noise The H∞ super sensor has a slightly
higher noise amplification around ∼ 0.1Hz, corresponding to the amplification band of
the complementary filters, and rolls off along the geophone noise at higher frequencies
with a slight multiplicative offset. Even with the presence of the microseism, the H∞
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super sensor noise follows the shape of the lower limit well at all frequencies. On the
other hand, the microseismic peak appears in the KAGRA super sensor noise so it is not
filtered well. At higher frequencies, the KAGRA super sensor noise rolls off close to the
geophone noise. Although the KAGRA super sensor performs better at high frequency, it
introduces a significant amount of drift at low frequency compared to the original LVDT
and H∞ noise while providing little seismic noise attenuation. As shown in subplot (b)
of Fig. 8.20, the RMS value of the KAGRA super sensor noise is 0.8694 µm, which is the
highest among those of the original LVDT noise and the H∞ super sensor noise, which
are 0.2485 µm and 0.3578 µm, respectively.

The H∞ complementary filters are implemented to the SRM pre-isolator and open-
loop spectra were simultaneously measured for the KAGRA andH∞ super sensors. In this
particular case, there was a mistake when synthesizing the H∞-optimal complementary
filters. The intrinsic noise of the LVDT was amplified by a factor of ∼ 3.56 during
the modeling. The actual noise model used is not that one shown in Fig. 8.20 and the
actual complementary filters are slightly different from that in Fig. 8.19. The H∞ norm
corresponding to the actual sensor fusion configuration is γ = 8.913, which correspond to
a slightly higher noise amplification. Therefore, the measurements here are for references
only.

Fig. 8.21 shows the open-loop spectra of the KAGRA and H∞ super sensors. The
LVDT and geophone readouts are also shown as references. The spectra correspond to
measured displacement of the pre-isolator table so they do not represent the sensing
noises exactly. However, any observable differences between the spectra are explained by
difference in sensing noise. Therefore, the open-loop spectra can be compared this way.

As can be seen, similar observations from Fig. 8.20 can be made from the real mea-
surements in Fig. 8.21. At low frequency, the KAGRA super sensor has a higher noise
compared to that of the H∞ super sensor. As a result, the KAGRA super sensor readout
has an RMS value of 0.55 µm, which is highest among the LVDT and the H∞ super sen-
sor. The RMS value of the LVDT readout and the H∞ super sensor readout are 0.342 µm
and 0.356 µm, respectively. Around 0.1Hz, the H∞ super sensor has a noise amplification
that corresponds to the peak of the complementary filters. The H∞ super sensor has
a better seismic attenuation at 0.2Hz and a similar performance at 0.3Hz compared to
the KAGRA super sensor. In this measurement, the microseismic peak shifted from the
expected 0.2Hz to ∼ 0.3Hz, which means the H∞ super sensor is operating sub-optimally
and this explains why the difference in seismic attenuation between the two super sensors
is subtle. At above 0.7Hz, the H∞ super sensor has a clear noise amplification relative
the geophone noise. This is a consequence of the compensation of the geophone pre-filter,
which is to be discussed in Sec. 9.1.2. It should be noted that the signal-to-noise ratio of
both super sensors around the first resonance is very low. This means that the super sen-
sors cannot be used to suppress the main resonance motion. This makes the super sensor
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(a) SRM pre-isolator longitudinal open-loop readout

LVDT

Geophone

KAGRA super sensor

H∞ super sensor
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(b) SRM pre-isolator longitudinal open-loop readout (RMS)

LVDT

KAGRA super sensor

H∞ super sensor

Figure 8.21: SRM pre-isolator longitudinal freeswing readout. (a) Amplitude spectral
density. (b) RMS. Blue solid: LVDT (seismic noise coupled). Orange dashed: Geophone.
Green dash-dot: KAGRA super sensor. Red dotted: H∞ super sensor.

configuration, using only the seismically-coupled LVDT and geophone, not very suitable
for damping the resonances. This also explains why inertial damping was abandoned
during pre-O3 commissioning and focus was switched to sensor correction instead.
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8.3.3 H∞ sensor correction

It is tempting solve the sensor correction problem by treating it exactly as a sensor fusion
problem. This is because the form of sensor correction noise in Eqn. (7.18) looks exactly
like the super sensor noise in Eqn. (7.8). To show why this is sub-optimal, consider the
seismic noise model (blue solid) and the seismometer noise model (orange dashed) in
Fig. 8.22. Here, the seismic noise model and the seismometer noise are modeled against
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SRM pre-isolator longitudinal sensor correction noise models

Seismic noise (model)

Seismometer (model)

LVDT (model)

Trial H∞ sensor correction (estimated)

Seismic noise modified (model)

H∞ sensor correction (estimated)

Figure 8.22: SRM pre-isolator longitudinal sensor correction noise models and estimated
sensor correction noises. Blue solid: Seismic noise. Orange dashed: Seismometer. Green
dash-dot: LVDT. Red dotted: Trial H∞ sensor correction. Lilac dash-dot-dot: Modified
seismic noise. Brown dash-dot-dot-dot: H∞ sensor correction

the KAGRA mean seismic noise and the IXV seismometer noise shown in Fig. 8.17,
respectively. Plugging these two noises in to the generalized plant Fig. 8.3 and solving
for a “trial” sensor correction filter gives a sensor correction noise (red dotted) shown in
Fig. 8.22. Note that the trial version of sensor correction is shown as a demonstration only
and this configuration is not intended to be used. The trial sensor correction filter (blue
solid) and the corresponding seismic noise transmissivity (orange dashed) are plotted in
subplot (a) of Fig. 8.24 as a reference.

Firstly, from Fig. 8.22, the flat region of the seismic noise at low frequency is not a
estimation of the seismic noise as it was artificially made flat to neglect the seismometer
noise in the measurement. This means that the seismometer noise in the sensor correction
readout might be under-suppressed and the extent depends on how the data is treated.
At frequencies above ∼ 0.04Hz, the sensor correction noise follows the spectral shape of
the seismometer noise, indicating an “optimal” roll off. However, ultimately, the readout
of the sensor corrected LVDT in Eqn. 7.17 is used for feedback control and it has a sensing
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Figure 8.23: SRM pre-isolator longitudinal trial sensor correction filter and seismic trans-
missivity. Blue solid: Sensor correction filter. Orange dashed: Seismic transmissivity.

noise composed of the relative sensor noise Nrel(s) and the sensor correction noise Nsc(s).
With the relative sensor noise (green dash-dot), which is the LVDT noise, also plotted
in Fig. 8.22, it is clear that the seismic noise is over-suppressed. This is indicated by
the fact that the sensor correction noise goes lower than the LVDT noise at frequencies
above ∼ 0.13Hz. At those frequencies, the corrected LVDT readout is dominated by the
intrinsic noise of the LVDT and further suppression of the seismic noise is not useful.
This falsifies the conventional method of requiring the seismic noise transmissivity to be
as low as possible, i.e. the sensor correction filter does not have to be exactly 1 at the
pass band.

To resolve the issues above, the seismic noise data in Fig. 8.17 is modified as follows.
For low frequency data, instead of flattening the curve below the frequency of the first
minima next to the secondary microseism, the curve was extrapolated. The extrapolation
for the ith data point is done by taking the average between the (i + 1)th data point of
the seismic noise data and the ith value of the LVDT noise. This goes with decreasing
values of i, starting from the index just below the local minima next to the secondary
microseism. When the value of the ith seismic noise data point is higher than that of the
(i + 1)th data point, it is set to the value of the (i + 1)th data point. This flattens the
curve at low frequency, making it lower than the LVDT noise. As for high frequency data,
the values of the seismic noise data points at frequencies higher than the microseismic
peak are set to the value of the microseismic peak, making a flat line at high frequency.
The purpose of this is to force the H∞ sensor correction filter to be a high-pass filter.
Without this modification, the sensor correction filter will amplify both seismic noise and

206 Optimizing Active Isolation Systems in Gravitational-Wave Detectors



8.3. H∞ OPTIMIZATION OF THE SRM PRE-ISOLATOR CONTROL FILTERS

seismometer noise at high frequency if the target noise level is specified to the level of the
LVDT noise. This has one benefit: the sensor correction performance is not sensitive to
a change in microseism frequency.
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Figure 8.24: SRM pre-isolator longitudinal sensor correction filter and seismic transmis-
sivity. Blue solid: Sensor correction filter. Orange dashed: Seismic transmissivity.

The corresponding transfer function model of the modified seismic noise is shown as
lilac dash-dot-dot curve in Fig. 8.22. As can be seen, the LVDT noise becomes higher than
the minimum of the seismometer noise and the modified seismic noise at most frequencies.
Therefore, it can be used as the weights for specifying the upper bounds of both the
suppressed seismic noise and the filtered seismometer noise, as discussed in Sec. 8.2.2.
The sensor correction filter was optimized using the H∞ method discussed in Sec. 8.2.2
The H∞ sensor correction filter (blue solid) and the corresponding seismic transmissivity
(orange dashed) are is shown in subplot (b) of Fig. 8.24. As can be seen, at high frequency,
the seismic transmissivitiy the sensor correction filter plateau at ∼ 0.055 and ∼ 0.945.

The resulting H∞ norm of the optimization is γ = 3.56. This means that the resultant
sensor correction noise can be estimated as 3.56 times that of the LVDT noise4, except at
frequencies higher than the microseismic peak. The estimated sensor correction noise is
shown in Fig. 8.22 as brown dash-dot-dot-dot line. As can be seen, the estimated sensor
correction noise follows the shape of the LVDT noise roughly, with an multiplicative
offset of ∼ 3.56. Note that the sensor correction noise is estimated using the modified
seismic noise model, which is not true at frequencies higher than the microseism. At those
frequencies, the sensor correction noise would be lower. So this means that the sensing

4This explains the mistake made earlier in Sec. 8.3.2.
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noise of the corrected LVDT would converge to the intrinsic noise of the LVDT at those
frequencies.
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(a) SRM pre-isolator longitudinal open-loop readout
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(b) SRM pre-isolator longitudinal open-loop readout (RMS)

LVDT

KAGRA super sensor

KAGRA sensor correction

H∞ sensor correction

Figure 8.25: SRM pre-isolator longitudinal open-loop readout. (a) Amplitude spectral
density. (b) RMS. Blue solid: LVDT. Orange dashed: Geophone. Green dash-dot: KA-
GRA super sensor. Red dotted: KAGRA sensor correction. Lilac dash-dot-dot: H∞
sensor correction.

The H∞ sensor correction filter was put into test in the SRM pre-isolator. Fig. 8.25
shows a comparison between the open-loop readouts of the KAGRA super sensor (green
dash-dot), KAGRA sensor correction (red dotted), and the H∞ sensor correction (lilac
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dash-dot-dot). The LVDT and geophone readouts are also shown as references. At low
frequency, the KAGRA sensor correction has the worst performance due to the noise
amplification at 0.013Hz resulting from the design of the sensor correction filter shown in
subplot (a) in Fig. 8.18. In contrast, the noise amplification area of the H∞ falls between
∼ 0.05Hz and ∼ 1Hz, which correspond to the trough area formed by the seismometer
and seismic noise shown in Fig. 8.22. The misplacement of the noise amplification in the
KAGRA sensor correction filter caused an excessive low-frequency drift in the readout and
the RMS value is 1.417 µm as shown in subplot (b) of Fig. 8.25. In comparison, the RMS
value of the LVDT, the KAGRA super sensor, and the H∞ sensor correction readouts
are 0.412 µm, 0.552 µm, and 0.351 µm, respectively. The fact that the lower RMS of the
H∞ sensor correction readout indicates that the H∞ sensor corrected LVDT is an overall
better sensor, at least in the RMS sense.

At the microseism frequency, the suppression of the microseism coupling is similar
for both sensor correction configuration. The microseismic peak is reduced by roughly
one order of magnitude. Both of them offered a slightly better suppression compared
to the KAGRA super sensor, as is indicated by the RMS plot. The RMS integrated
down to 0.1Hz reads 0.256 µm, 0.0426 µm and 0.0482 µm for the LVDT readout, the
KAGRA sensor correction readout, and the H∞ sensor correction readout, respectively.
Although the H∞ sensor correction offers slightly lower suppression of seismic noise, the
suppression is achieved with virtually no penalty whereas the KAGRA sensor correction
has an excessive noise amplification in exchange. The H∞ sensor correction readout has
an insignificant noise amplification compared to the LVDT noise at low frequency.

With the H∞ sensor correction filter, the corrected readout offers better suppression
of the microseism while having superior noise performance at low frequency compared
the KAGRA super sensor, which is intended to be used for “active seismic isolation”
during O4. The corrected LVDT, being based on the LVDT readout, has poorer noise
performance at high frequency compared to the KAGRA super sensor. However, this
should not matter for the O4 target sensitivity, which is similar to sensitivity achieved
during O3GK [24] where LVDTs were used for the control of the pre-isolators. Therefore,
the H∞ sensor correction is undoubtedly already a better alternative for active seismic
isolation for O4 compared to the current implementation of inertial damping at KAGRA.

The closed-loop results of the H∞ sensor correction is given in Sec. 8.3.5.

8.3.4 H∞ sensor fusion with sensor correction

With a sensor correction scheme implemented, it is worth re-introducing the sensor fusion
and discuss how the geophones can improve the sensing performance. In this section,
the sensor fusion between the sensor corrected LVDT in Sec. 8.3.3 and the geophone
is discussed. The H∞ sensor correction configuration in Sec. 8.3.3 has an H∞ norm of
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γ = 3.56, meaning that the estimated sensor correction noise is 3.56 times the noise of
the LVDT. At frequencies higher than the microseism, the estimation is incorrect since
the modified noise model has a higher amplitude compared to the real seismic noise. At
those frequencies, the noise of the corrected LVDT is dominated by the the LVDT noise,
instead of the sensor correction noise, as shown in Fig. 8.25. But, the sensor correction
noise has just a slight offset of from the LVDT noise. Therefore, for simplicity, it is used
as an conservative approximation of the sensing noise of the corrected LVDT.
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SRM pre-isolator longitudinal sensor correction noise models

Sensor corrected LVDT (model)

Geophnoe (model)

H∞ sensor fusion with H∞ sensor correction (estimated)

Figure 8.26: SRM pre-isolator longitudinal noise models and estimated super sensor noise.
Blue solid: Sensor corrected LVDT (model). Orange dashed: Geophone (model). Green
dash-dot: H∞ super sensor with sensor correction (estimation).

The noise models of the sensor corrected LVDT and the geophone are shown as blue
solid curve and orange dashed curve, respectively, in Fig. 8.26. As can be seen, this sensor
fusion configuration is almost identical to the example shown in Sec. 8.2.1 as the noise
model of the sensor corrected LVDT takes the shape of the LVDT noise. The procedure
for H∞ optimization for sensor fusion is therefore the same as in the example and the
H∞ complementary filters are shown in Fig. 8.27. The H∞ norm is this case is γ = 4.65.
As shown in the figure, the complementary filters look very similar to those in Fig. 8.5
except with a higher blending frequency of ∼ 0.12Hz. The estimated super sensor noise
is shown as green dash-dot line in Fig. 8.26, which is expectedly close to the lower limit
at all frequencies. Again, note that the noise estimation at frequencies higher than the
microseism is overestimated as the sensor corrected LVDT has a sensing noise slightly
lower than that shown in Fig. 8.26.

Fig. 8.28 shows the open-loop longitudinal displacement of the SRM pre-isolator table
using different sensing readouts. As can be seen from subplot (a), the low frequency
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Figure 8.27: H∞ complementary filters for the sensor fusion of the sensor corrected LVDT
and the geophone of the SRM pre-isolator in the longitudinal direction. Blue solid: H∞
low-pass filter for the sensor corrected LVDT. Orange dashed: H∞ high-pass filter for the
goephone.

noise performance of the H∞ super sensor with sensor correction (H∞ super sensor from
hereafter) (lilac dash-dot-dot) is similar to that of the sensor corrected LVDT (red dotted).
They are both close the LVDT noise (blue solid). Also, The H∞ super sensor offers a
slightly better noise performance at the microseismic peak. This is also indicated by
the lower integrated RMS between ∼ 0.12Hz and ∼ 0.3Hz. However, when the RMS
value is integrated down to 0.1Hz, the value becomes 0.0573 µm for the H∞ super sensor,
which is slightly higher than that of the H∞ sensor correction (0.0483 µm). This is due
to the noise amplification around the blending frequency of the complementary filters.
At high frequencies, the H∞ super sensor noise is close to the geophone sensing noise,
which might be desirable for a low-noise operation. The overall RMS value of the H∞

super sensor readout is 0.359 µm, which is comparable to the RMS value of the H∞ sensor
correction readout (0.351 µm). Both H∞ readouts have lower RMS values than those of
the LVDT (0.412µm) and the KAGRA super sensor (0.552µm). In short, compared to
the H∞ sensor correction, the H∞ super sensor provides a slightly better seismic noise
attenuation at the microseism and has lower noise at high frequency with a cost of slightly
higher RMS value due to the noise amplification around 0.12Hz.

8.3.5 H∞ sensors closed-loop performance and summary

As a verification, theH∞ sensor correction and complementary filters obtained in Sec. 8.3.3
and 8.3.4 were implemented to the SRM pre-isolator. The pre-isolator is controlled with
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(a) SRM pre-isolator longitudinal open-loop readout
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(b) SRM pre-isolator longitudinal open-loop readout (RMS)
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KAGRA super sensor
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H∞ super sensor with H∞ sensor correction

Figure 8.28: SRM pre-isolator longitudinal open-loop readout. (a) Amplitude spectral
density. (b) RMS. Blue solid: LVDT. Orange dashed: Geophone. Green dash-dot: KA-
GRA super sensor. Red dotted: H∞ sensor correction. Lilac dash-dot-dot: H∞ sensor
sensor with H∞ sensor correction.

the PID controller in Fig. 8.14 with 5 different sensors,

1. LVDT (seismic coupled),

2. KAGRA sensor corrected LVDT,

3. KAGRA super sensor,
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4. H∞ sensor correction, and

5. H∞ super sensor with sensor correction.

The optical lever at the test mass stage is used as an out-of-loop sensor to monitor the
longitudinal displacement of the SRM optics when the pre-isolator is controlled. Here,
all measurements were done consecutively within a short period and they were all done
under a similar seismic environment. This is to ensure that the closed-loop displacement
levels are comparable. The seismic noise levels measured by the IXV sesimometer during
the closed-loop measurements of the SRM are shown Fig. 8.29 as a reference. As can
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Figure 8.29: Seismic noise levels during closed-loop measurements. Blue solid: Open-
loop. Orange dashed: Control with LVDT. Green dash-dot: Control with KAGRA sensor
correction. Red dotted: KAGRA super sensor. Lilac dash-dot-dot: H∞ sensor correction.
Brown dash-dot-dot-dot: H∞ sensor fusion with sensor correction.

be seen, the seismic noise levels between during each closed-loop measurements overlaps
well.

The SRM longitudinal displacements measured by the optical lever are shown in
Fig. 8.30. As shown in Fig. 8.30, the optical lever readout is unfortunately dominated by
its self-noise. Nonetheless, some differences can be observed between closed-loop configu-
ration using different sensors. Firstly, it is clear that the KAGRA sensor correction setup
has introduced a significant drift to the optics at low frequency, which has increased the
RMS value of the displacement to 1.8 µm. This is significantly higher than those of other
configurations and should not be considered.

At the first resonance frequency of the pre-isolator, 0.06Hz, a peak is clearly observable
from the displacement spectrum under and open-loop condition. From the RMS plot, the
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Figure 8.30: Longitudinal displacement of the SRM optics with pre-isolator control. (a)
Amplitude spectral density. (b) RMS. Blue solid: Open-loop. Orange dashed: Control
with LVDT. Green dash-dot: Control with KAGRA sensor correction. Red dotted: KA-
GRA super sensor. Lilac dash-dot-dot: H∞ sensor correction. Brown dash-dot-dot-dot:
H∞ sensor fusion with sensor correction.

resonance peak contributes an RMS of around 0.1 µm (an increase from ∼ 0.2 µm to ∼
0.3 µm). And clearly, the peak is not observable in all closed-loop condition. This indicates
that all sensor configruations are working properly under the closed-loop condition.

At 0.4Hz, the second resonance peak, a difference between the LVDT control and
others can be seen. The peak level is around 1 µm/

√
Hz under the open-loop condition,
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and is around 0.8 µm/
√
Hz. Despite having an open-loop gain of ∼ 10 as shown in

Fig. 8.14, the suppression ratio with the closed-loop configuration using the LVDT is only
∼ 1/0.8 = 1.25, which is way less than the open-loop gain of 10. This is due to the
fact that the seismic noise level around the microseism is similar to that of the second
resonance, as is also indicated in subplots (a) in Fig. 8.25 and 8.28. This means that the
uncorrected LVDT measures the second resonance with a low signal-to-noise ratio and
hence cannot be used to damp the peak effectively. Instead, the microseism is injected at
that freuqency where the open-loop gain is high, which explains the widen shape of the
peak. In comparison, the peak is not observable under other closed-loop configuration.
From the RMS plot, under the open-loop condition, the second peak contributes a step of
RMS value of around 0.036 µm (increased from ∼ 0.111 µm to ∼ 0.147 µm from 0.42Hz to
0.38Hz). This step in the RMS plot is not obviously from all closed-loop configurations
with sensor correction and sensor fusion. And, this indicates that the sensor correction
and sensor fusion configurations can indeed be used to improve the damping performance
of the suspensions.

As for the resonance peak at 0.67Hz, the suppression ratio is low for all closed-loop
configuration. This may be due to the fact that the control has a low open-loop gain and
a low signal-to-noise ratio for all configurations. Also, there is a degenerating pendulum
mode, that involves the longitudinal and pitch motion of the payload but not the pre-
isolator, at this frequency. From the open-loop readouts in Fig. 8.25 and 8.28, the peak
at 0.67Hz appears to be lower than the peak at 0.4Hz. Whereas in the optics open-loop
readout in Fig. 8.30, this is reversed. Therefore, the observed peak at 0.67Hz may not be
entirely due to the motion of the pre-isolator, but rather, the motion of the aforementioned
pendulum.

Pre-isolator control configuration Optics displacement readout RMS (µm)
Open loop 0.587

LVDT 0.589
KAGRA sensor correction 1.8

KAGRA super sensor 0.667
H∞ sensor correction 0.446

H∞ super sensor with sensor correction 0.465

Table 8.1: RMS value of the SRM optics displacement readout under different pre-isolator
control configuration.

The RMS values of the SRM optics displacement measured by the optical lever under
different pre-isolator control configurations are summarized in Table 8.1. The values for
the open-loop, LVDT, KAGRA sensor correction, KAGRA super sensor, H∞ sensor cor-
rection, and H∞ super sensor configurations are 0.587 µm, 0.589 µm, 0.667 µm, 0.446 µm,
and 0.465 µm, respectively. Again, note that the spectrum of the displacement readout
of the optics is dominated by the self-noise of the optical lever. Therefore, the values in
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Table 8.1 do not represent the actual RMS values of the optics displacement. But, the
differences can be used to evaluate the relative performance between different configura-
tions. And, as can be seen, both H∞ configurations offer better closed-loop performance
compared to the LVDT, and the original KAGRA sensor correction and sensor fusion con-
figurations. Between the two H∞ configurations, the H∞ sensor correction configuration
has a slightly closed-loop RMS value. This is because the use of geophones in the sensor
fusion configuration introduces a slight addition of noise at low frequency, which eventu-
ally contributes to the subtle increase in RMS value. Nevertheless, the H∞ super sensor
configuration offers ∼ 3 orders of magnitude reduction in noise level at 10Hz compared
to the sensor correction configuration, as shown in Fig. 8.28 in Sec. 8.3.4.

Pre-isolator sensors Sensor readout RMS (µm)
LVDT 0.412

KAGRA sensor correction 1.417
KAGRA super sensor 0.552
H∞ sensor correction 0.351

H∞ super sensor with sensor correction 0.359

Table 8.2: RMS values of the SRM pre-isolator displacement readouts under different
sensing configuration (pre-isolator open loop).

Table. 8.2 shows a summary of the RMS value of different sensing configurations of
the pre-isolator under the open-loop condition. These values are reiterated from Sec. 8.3.3
and 8.3.4. As can be seen, the open-loop results agree with those measured in closed-loop
condition in Table 8.1, with the original KAGRA configurations being worse than the
LVDT and the H∞ sensors being superior. In summary, the H∞ sensor correction and
sensor fusion configuration shows improvements in noise performance compared to the
LVDT, the original KAGRA sensor correction, and the original sensor fusion configura-
tions. The H∞ sensor correction and the H∞ super sensor (with sensor correction) have
similar noise performance in terms of RMS value, with the sensor fusion being slightly
worse. However, the H∞ sensor fusion offers significantly lower noise at high frequency
and should be considered when the pre-isolator control noise becomes significant to the
detector sensitivity.

8.3.6 H∞ control

In this section, the H∞ control of the pre-isolator is discussed. Two types of controllers
are presented here. The first problem is the active isolation control that seeks optimal
trade-off between seismic isolation and noise attenuation. And, the second problem is
damping control similar to the example in Sec. 8.2.3. The former control system was
unfortunately not realizable due to the impracticality and complexity of H∞ controllers.
To compensate for this, the latter control serves as a simplified example of H∞ control
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but is not a realistic control problem in active isolation systems.

Active isolation control

For active isolation control at the pre-isolator stage, the goal is to attenuate the seis-
mically induced motion without injecting too much control noise (Including actuation
noise and sensor noise, although only sensor noise have been discussed so far.). The
seismically induced motion is the corresponding disturbance under the feedback control
framework shown in Fig. 5.5. Without control, the pre-isolator table displacement can be
written as X(s) = D(s) = Pg(s)Xg(s), where D(s) is the disturbance, i.e. the seismically
induced motion, Xg(s) is the ground displacement, and Pg(s) is the transfer function
from ground displacement to the pre-isolator table displacement, i.e. the passive atten-
uation. Both transfer functions, from ground displacement or from actuation, refer to
a similar same dynamics of the inverted pendulum. Therefore, assuming that the pre-
isolator follows the ground motion perfectly below the main resonance frequency, the
ground transfer function Pg(s) can be approximated as the normalized actuation transfer
function Pg(s) = P (s)/|P (0)|, where P (s) is the transfer function from actuation to the
pre-isolator displacement. Hence, the disturbance is D(s) = P (s)Xg(s)/|P (0)|, which
is already obtainable based on transfer function models in previous sections (P (s) from
Sec. 8.3.1 and Xg(s) from Sec. 8.3.3).

Suppose theH∞ sensor correction configuration is used (so the geophone can be used as
an out-of-loop sensor to monitor the control performance), the corresponding sensing noise
of the feedback control problem, like how it is done in Sec. 8.3.4, can then be approximated
as the LVDT noise multiplied by the H∞ norm of the sensor correction configuration,
which is γ = 3.56. In principle, the sensing noise should be re-measured with the sensor
correction scheme implemented but the estimated noise is used here for simplicity. For
the purpose of position control of the pre-isolator table, the disturbance is multiplied by a
factor of [(s+ω0)/(s+ ϵ)]

2 with ω0 = 2π× 0.01 rad/sec and ϵ = 2π× 0.001 rad/sec, which
are arbitrarily chosen for illustration purpose. As opposed to first-order one described
in Sec. 8.2.3, the second-order transfer function is chosen such that the relative order
between the disturbance and the noise is at least one, which is required for H∞ synthesis
to generate an integrator-like structure at low frequency. The disturbance (blue solid)
and sensing noise model (orange dashed) are shown in Fig. 8.31.

With the disturbance, sensing noise, and actuation plant obtained, the weights and
the transfer function models in the generalized plant for feedback control in Fig. 8.8 are
all defined assuming the optimal weightings WD(s) = 1/N̂(s) and WN(s) = 1/D̂(s). The
feedback controller is optimized using H∞ synthesis according to Sec. 8.2.3. In Fig. 8.31,
the estimated closed-loop displacement (green dash-dot) plotted. As can be seen, the
main resonance peaks at 0.06Hz and 0.067Hz are suppressed to a level close to the
sensing noise. The peaks at higher frequencies are not suppressed since they are below
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Figure 8.31: SRM pre-isolator longituidinal noise models and displacement. Blue solid:
Disturbance (model), i.e. The seismically induced displacement. Orange dashed: Noise
(model), i.e. the sensing noise of the H∞ sensor corrected LVDT. Green dash-dot: The
closed-loop displacement with H∞ controller.

the noise level of the sensor, and in fact, they are amplified roughly by a factor of the
H∞ norm, which is γ = 1.9 in this case. At high frequency, the pre-isolator displacement
rolls off towards the natural attenuation of the suspension. Again, this shows how H∞

control can suppress control noise such that the feedback control does not ruin the passive
isolation performance at high frequency.

The frequency responses of the open-loop transfer function ((a) and (c)) and the
H∞ controller ((b) and (d)) for SRM pre-isolator longitduinal direction is shown as blue
solid lines in Fig. 8.32. The H∞ controller for the SRM pre-isolator was implemented
to the KAGRA digital system using the Foton utility. To achieve this, the 46th-order
H∞ controller was split into 3 transfer functions, which is equivalent to the H∞ controller
when connected in series. This is necessary in practice since the Foton utility only accepts
filters up to 20th order. The controller, as interpreted by Foton, is shown as orange dashed
line in Fig. 8.32. As can be seen, the Foton utility unfortunately did not interpret the
controller correctly. This resulted in an unexpected controller, which has unwanted peaks
around the resonance frequencies.

Fig. 8.33 shows the Nyquist plot of the expected H∞ control (subplot (a)) and that of
the Foton interpreted control (subplot (b)) for the SRM pre-isolator. While it is unclear
from the Bode plot in Fig. 8.32 that the H∞ control is stable, the Nyquist plot shown in
subplot (a) in Fig. 8.33 clearly indicates the H∞ control of the SRM pre-isolator is stable
as there is no encirclement around the −1 point. However, the same cannot be said for
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(b) SRM pre-isolator longitudinal controller (magnitude)
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Figure 8.32: SRM pre-isolator open-loop transfer function and H∞ controller. (a) and
(c) Open-loop transfer function (magnitude and phase). (b) and (d) H∞ controller. Blue
solid: Expected H∞ controller. Orange dash-dot: Foton interpreted H∞ controller.

the Foton interpreted H∞ controller. In subplot (b), it is clear that the Foton interpreted
H∞ controller resulted in an unstable system since there are multiple encirclement around
the −1 point while the plant is open-loop stable. This means that the implementation of
H∞ is unsuccessful and the system was tested to be closed-loop unstable in reality.

Nevertheless, there are certain implications that can be drawn from the the H∞ con-
troller. First of all, theH∞ controller is a broadband controller, if not like a PID controller
in Fig. 8.14. The V-shape magnitude response at low frequency is very similar to that
created by the integral and derivative controller. This means that the PID controller is
actually not that far from optimal. However, the H∞ controller clearly has lower loop-
gain at the main resonances, which indicates that the critical damping gain is, in fact,
too high for this configuration. At the microseism, the open-loop gain is lower than 1,
meaning that there is effectively no feedback action that actively attenuates the seismic
noise. Therefore, active vibration isolation, at least for the SRM suspension, is more like
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Figure 8.33: Nyquist plot of the SRM pre-isolator longitudinal control. (a) Expected H∞
control. (b) Foton interpreted H∞ control.

“not injecting seismic noise” rather than suppressing seismic noise at the microseism. At
high frequency, the roll-off is 4th to 5th-order and the corner frequency, judging from the
controller response, is around 0.3Hz, which is roughly one decade lower than that in the
PID controller. While the H∞ controller may not be implementable, a PID controller can
be re-designed according to these features, either via manual shaping or H∞ loop-shaping
with fixed controller structure, in the future if low-noise operation is desirable.

Example damping control

To exemplify the H∞ control, the yaw degree of freedom of the SRM pre-isolator is
considered instead. The pre-isolator yaw only has one resonance and hence the plant is
much simpler than that of the longitudinal direction. This hopefully would result in an
H∞ controller that can be implemented. For the yaw degree of freedom, the disturbance in
this direction cannot be easily characterized. Firstly, there is no natural yaw disturbance,
i.e. shear on the ground. Secondly, the disturbance of the yaw degree of freedom comes
from cross-coupling from other degrees of freedom, which cannot be easily estimated.
Therefore, for simplicity, the disturbance here is assumed to be the actuation plant P (s).
And, during the actual test, the disturbance is injected via the actuators. As for the
sensing noise, there is no sensor correction and the geophone is intended to be used as
an out-of-loop sensor to measure the control performance. Therefore, the sensing noise is
simply the LVDT noise.

The disturbance (blue solid) and the noise (orange dashed) models in the SRM pre-
isolator yaw degree of freedom are shown in Fig. 8.34. The transfer function models are
used in H∞ synthesis to optimize the feedback controller and the H∞ norm is γ = 1.19.
The H∞ controller and the corresponding open-loop transfer function are shown as orange
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Figure 8.34: SRM pre-isolator yaw noise models and displacement. Blue solid: Distur-
bance (model). Orange dashed: Noise (model). Green dash-dot: Closed-loop displace-
ment with derivative control. Red dotted: Closed-loop displacement with H∞ control.

dashed lines in Fig. 8.35. Note that the H∞ controller has a 4th-order low-pass post-filter
at 10Hz. As a comparison, the derivative controller that is optimized for critical damping
is shown as blue solid lines. The derivative controller has a 4th-order low-pass filter
optimized for a 60◦ phase margin.

The estimated closed-loop displacements for the derivative control and H∞ control are
shown as green dash-dot and red dotted lines, respectively, in Fig. 8.34. As can be seen,
both derivative control and H∞ provide adequate suppression at the resonance frequency,
with the derivative control providing a slightly higher attenuation. However, the derivative
control injects excessive noise at higher frequency compared to the H∞ control. On the
other hand, the H∞ closed-loop displacement follows the lower limit at all frequencies as
expected. This shows that the H∞ method can be used to design controllers to suppress
resonance peaks with low-noise injection, assuming that the disturbance can be modeled.

The H∞ controller was implemented to the actual SRM suspension and it is tested
by injected the corresponding disturbance using the actuators. The derivative controller
was also tested as a comparison. Fig. 8.36 shows the open-loop and closed-loop displace-
ments of the SRM pre-isolator with the disturbance injection. Note that the closed-loop
displacements were measured by the geophone and the feedback controller uses readout
from the LVDT. Also, the geophone readout is not useful at low frequency, especially be-
low ∼ 0.1Hz, due to the geophone noise. As shown in the figure, the results agrees with
the conclusion in the simulated cases in Fig. 8.34. Both controllers suppress the yaw res-
onances well but the derivative controller resulted in a noise pump at higher frequencies.
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(b) SRM pre-isolator yaw controller (magnitude)

Derivative controller

H∞ controller

10−3 10−2 10−1 100 101

Frequency (Hz)

−150

−100

−50

0

50

100

150

P
h

as
e

(d
eg

re
e)

(c) SRM pre-isolator yaw open-loop transfer function (phase)
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Figure 8.35: SRM pre-isolator yaw open-loop transfer function and controller. (a) and (c):
Open-loop transfer function (magnitude and phase). (b) and (d): Controller (magnitude
and phase). Blue solid: Derivative control. Orange dashed: H∞ control.

Again, this shows how H∞ method can be used to optimize controllers that attenuates
control noise properly.
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Figure 8.36: SRM pre-isolator yaw displacement. Blue solid: Open-loop displacement
measured by LVDT. Orange dashed: Open-loop displacement measured by geophone.
Green dashed: PID closed-loop displacement measured by geophone. Red dotted: H∞
closed-loop displacement measured by geophone.
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Chapter 9

Concluding Remarks

9.1 Discussions

9.1.1 On H∞ methods

Undoubtedly, the H∞ method has provided a new way of optimizing control filters for ac-
tive isolation systems in gravitational-wave detectors. And, the method has been verified
experimentally with the KAGRA SRM suspension as shown in Sec. 8.3.3, 8.3.4, and 8.3.6.
While the control schemes, such as sensor fusion, sensor correction, and feedback control,
are not exclusive to KAGRA detector, the H∞ method can eventually be useful for other
gravitational-wave detectors including LIGO, Virgo, and in the future, LIGO-India and
the Einstein Telescope. However, in reality, there are some practical problems regarding
H∞ methods that need to be addressed.

As mentioned in Sec. 8.1.2, the central controller of the H∞ problem has the same
states of the generalized plant. With the weighting functions, often times, the H∞ syn-
thesis gives high-order controllers, especially in the case of the feedback control setup
discussed in Sec. 8.2.3. High-order controllers may be fine in simulation but could face
problems related to numerical accuracy in reality. This is because the coefficients of the
polynomial could span a huge dynamic range. For example, the lowest polynomial coef-
ficient in the H∞ controller for active isolation in Sec. 8.3.6 is 1.549× 10−10 whereas the
highest coefficient is 3.018 × 1037. Also, the value 1.549 × 10−10 is possibly an outlier /
residual as the second lowest coefficient in the same polynomial is 1.104 × 108, which is
18 order of magnitude higher. In fact, the simulation of time response with H∞ position
control in Sec. 8.2.3 was unsuccessful and resulted in a “Badly conditioned filter coeffi-
cients (numerator)” error using control.forced_response() from the Python Control
package. The solution is to remove such outlier coefficient. And, it is suspected that the
implementation failure of the H∞ controller in Sec. 8.3.6 might have be due to this issue.
To resolve this problem in the future, one might need to consider model reduction meth-
ods for simplifying the high-order controllers or weights using lower-order approximations
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[63].

In Sec. 8.2, the complementary filter shaping problem, sensor correction problem, and
feedback control problem are treated as separate problems. And, indeed, the H∞ method
solves problems well individually. But in reality, they are really small problems of the
active isolation problem, which ultimately seeks the minimization of the displacement
of the suspended optics. The H∞ method solves each subproblem and the solution is
assigned with an H∞ norm. And, by the way the problem is set up, the H∞ represents
how much the error signal is offsetted from a frequency-dependent lower limit. By treating
the subproblems as individual problems, the offsets become accumulative, and the sensor
correction noise in the sensor fusion configuration in Sec. 8.3.4 is a good example of this
phenomenon. TheH∞ method is generally capable of synthesizing regulators for multiple-
input and multiple-output systems. This means that all control filters in an active isolation
system could be synthesized in one design process in principle, seeking the minimization
of the motion suspended optics and other degrees of freedom of the suspension. The hope
is to look for an overall lower H∞ norm compared to the accumulative one. However, this
calls for a much sophisticate modeling of the suspension, including the characterization
of transfer functions between different degrees of freedom, and this remains to be a future
work.

9.1.2 On inertial sensor pre-filtering

The inertial sensors are intrinsically AC coupled and they have poor noise performance at
low frequencies. In practice, the inertial sensors need to be pre-filtered with high-pass fil-
ters or else the low-frequency error in the inertial signals could accumulate and eventually
saturate the process variables in the digital system, making them unusable. However, the
high-pass pre-filters add non-unity response to the inertial sensors and this distorts the
displacement measurements. As a result, this causes inter-calibration mismatch between
the relative sensors and the inertial sensors, in the context of sensor fusion. Even if the
complementary filters meet the complementary condition, the super sensor would have a
non-unity response around the blending frequency, which could eventually deteriorate the
control performance or even cause problems such as instability. This is especially impor-
tant when the cutoff frequency of the high-pass filter is close to the blending frequency.
And so, one simple way of solving the problem is to lower the cutoff frequency of the
pre-filter. However, this could be challenging due to the poor noise performance of the
geophones.

In the case of KAGRA, the effect of pre-filter is not negligible. Fig. 9.1 subplot (a)
shows the ratio between theH∞ super sensor (the one in Sec. 8.3.4) readout and the LVDT
readout during a transfer function measurement of the SRM pre-isolator longitudinal
degree of freedom. Two H∞ super sensors are shown here. Both H∞ super sensors use
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Figure 9.1: (a): Ratio between the H∞ super sensor readout and the LVDT readout.
Blue solid: Pre-filter uncompensated. Orange dashed: Pre-filter compensated. (b): Super
sensor response with prefilter uncompensated.

a pre-filtered geophone signal. The first one uses the H∞ complementary filters directly
without compensating the effect from pre-filtering (blue solid). And the other uses post-
processed complementary filters that takes into account the effect of pre-filtering (Orange
dashed).

In principle, the LVDT readout and the H∞ super sensor readouts should measure the
same signal and hence their ratio should be unity. However, as shown in subplot (a) of
Fig. 9.1, this is not the case. First of all, the difference at high frequency above 10Hz is
due to the difference between the noise level of the LVDT and the super sensor, which is
expected. At ∼ 0.35Hz, there is antiresonance in the transfer function of the pre-isolator
so the signals are noise dominated, which explains the huge difference again. The same
can be said for the peaks and notches around 0.06Hz and 0.6Hz. However, with the
geophone pre-filter not compensated, there is a notch around 0.1Hz that is not accounted
by any physical response. Subplot (b) in Fig. 9.1 shows the sum of the H∞ LVDT filter
and the H∞ geophone filter with the pre-filter, which corresponds to the super sensor
response. As can be seen, the super sensor response is not unity as the complementary
condition is not met. Also, there exists a notch around 0.1Hz and this well explains the
differences between the H∞ super sensor and the LVDT shown as blue solid curve in
subplot (a).

The non-unity response of the super sensor is an uncertainty in the control system and
should be eliminated if possible. To achieve this, three post-processing methods for the
complementary filters are proposed here to compensate for the pre-filter. Two of them
are not exclusive to the H∞ method and can be used for any complementary filters. Each
method have their own pros and cons and hence they are simply suggested here without
a definitive choice. It should be note that the deteriorating effect from the pre-filter is
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not an H∞ problem but is a general problem for any design of complementary filters. In
fact, the KAGRA complementary filters currently implemented in the suspensions do not
take into account the effect of the pre-filter.
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(a) Redefining from complementary condition
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(b) Normalizing the super sensor response

H∞ low-pass filter

H∞ high-pass filter

H∞ low-pass (normalized)

H∞ high-pass (normalized)

Complementary filters with pre-filter

Figure 9.2: H∞ complementary filters in Sec. 8.3.4. (a): Blue solid: H∞ low-pass filter.
Orange dashed: H∞ high-pass filter. Green dash-dot: H∞ low-pass filter redefined from
the complementary condition. Red dotted: H∞ with high-pass pre-filter. (b): Blue solid:
H∞ low-pass filter. Orange dashed: H∞ high-pass filter. Green dash-dot: H∞ low-pass
filter normalized using super sensor response. Red dotted: H∞ high-pass filter normalized
using super sensor response.

Consider a pair of complementary filters H1(s) and H2(s) ≡ 1 − H1(s) for a sensor
fusion of two sensors, sensor 1 and sensor 2, respectively. And, suppose a pre-filter
Hpre(s) is required for attenuating the excessive noise from the sensor 2, this redefines
the complementary filter H∗

2 (s) ≡ H2(s)Hpre(s) for sensor 2. The super sensor then has a
frequency-dependent response of

Rsuper(s) = H1(s) +H∗
2 (s) = H1(s) +H2(s)Hpre(s) ̸= 1 . (9.1)

One simple way to restore the unity response of the super sensor is to simply redefine the
complementary filter for the sensor 1 using the complementary condition, i.e.

H∗
1 (s) ≡ 1−H∗

2 (s) = 1−H2(s)Hpre(s) . (9.2)

In this case, the complementary filters actually implemented to the control system are
H∗

1 (s) and H2(s). But effectively, the complementary filters are H∗
1 (s) and H∗

2 (s), which
are complementary, when the pre-filter Hpre(s) is also implemented. This method is used
in the implementation of the H∞ complementary filters in Sec. 8.3.2 and 8.3.4 due to its
simplicity and it does not ruin the noise performance around the blending frequency, which
the next method would. Subplot (a) Fig. 9.2 compares the original H∞ complementary
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filters (blue soild and orange dashed) and the redefined ones H∗
1 (s) and H∗

2 (s) (green
dash-dot and red dotted). As can be seen, the magnitude responses of the filters are
similar except at low and high frequency, which is due to the pre-filter and redefinition.
In Fig. 9.1, the ratio between H∞ super sensor (with the low-pass filter redefined using
Eqn. (9.2)) and the LVDT. The notch around 0.1Hz corresponding to a non-unity super
sensor response is clearly eliminated.

The second method to restore a unity super sensor response is described in Refs. [28,
61]. But, the significance is not well discussed in the references and the method is simply
provided as a procedure. Here, the method is given as a re-elaboration and the significance
is also given. The introduction of the pre-filterHpre(s) resulted in a non-unity super sensor
response as described in Eqn. (9.1). It is obvious that when the super sensor signal is
filtered by 1/Rsuper(s), i.e. the inverse dynamics of the original super sensor signal with a
pre-filtered signal, the unity response is restored. It is equivalent to modify the originally
designed complementary filters as

H∗
1 (s) =

H1(s)

Rsuper(s)
=

H1(s)

H1(s) +H2(s)Hpre(s)
, (9.3)

and
H∗

2 (s) =
H2(s)

Rsuper(s)
=

H2(s)

H1(s) +H2(s)Hpre(s)
, (9.4)

where H1(s) and H2(s) are the originally designed complementary filters, Rsuper(s) is the
super sensor response in Eqn. (9.1), and H∗

1 (s) and H∗
2 (s) are the normalized complemen-

tary filters to be implemented. It is obvious that

H∗
1 (s) +H∗

2 (s)Hpre(s) = 1 , (9.5)

is complementary, i.e. the super sensor response is unity when sensor 2 is pre-filtered
with Hpre(s) and the complementary filters installed are H∗

1 (s) and H∗
2 (s). The new

complementary filters (with the pre filter) normalized using this method (green dashed
and red dotted) are shown in subplot (b) in Fig. 9.2. As can be seen, the magnitude
responses of the the low-pass filter retains as the original one, unlike the first method.
However, as a trade-off, the magnitudes of both filters around the blending frequency
increase, which can be seen as anti-notching the original super sensor response. This
could result in excess noise amplification around the blending frequency, which could ruin
the RMS performance of the super sensor. In such case, the other two alternatives should
be used.

The third method is only applicable to the H∞ method and is perhaps a more elegant
way of treating the pre-filter effect. However, this does not always work as the H∞

synthesis may yield no solution and hence is only given here as an alternative to the first
two methods. The idea is to include the pre-filter information in the generalized plant in
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Fig. 8.3 by modifying the noise model. The noise model N̂2(s) of the sensor that needs
to be pre-filtered is replaced by N̂2(s)/Ĥpre(s), where Ĥpre(s) is a stable transfer function
that has a frequency response representing that of the pre-filter Hpre(s), i.e. having
components like 1/s replaced by 1/(s+ ϵ) as discussed in Sec. 8.2.3. This way, the noise
model is amplified by the inverse of the pre-filter and the H∞ optimization will naturally
generate a complementary filter containing the pre-filter to counteract that amplification.
For this complementary filter H2(s), it needs to be multiplied by the inverse of the pre-
filter before implementation, so H∗

2 (s) = H2(s)/Ĥpre(s) is the one that gets implemented.
In such way, the effective complementary filter, H∗

2 (s)Hpre(s), becomes the H∞ filter,
as the pre-filter is applied. For the other complementary filter H1(s), i.e. the one for
the sensor without pre-filter, it can be implemented as is since it is complementary to
the effective complementary filter H∗

2 (s)Hpre(s). Unfortunately, a solution for the SRM
pre-isolator sensor fusion does not exists and hence the method is not demonstrated here.

9.1.3 On the implementation of inertial sensors

The implementation of inertial sensors for sensor fusion is a daunting task yet not so
rewarding in terms of active vibration isolation. There are many things that need to be
done properly in order for the inertial sensors to work. This includes obtaining the cali-
bration filters for the geophones, aligning the geophone sensing basis to the LVDT sensing
basis, inter-calibrating the geophones and the LVDTs, and hoping that the geophones do
not degrade so the parameters in the calibration filters remain unchanged (The L-4C geo-
phones are known to degrade [48]). Error in any of the tasks could accumulate and lead
to a super sensor with non-unity response, which is an uncertainty in the control systems
that could lead to control limitations or instability that are hard to trace. In exchange, as
shown in Sec. 8.3.4, only high-frequency noise performance is improved significantly but
with the cost of a slight increase in RMS, compared the sensor correction method. With
the current sensitivity target for KAGRA (similar to that achieved in O3GK), the high-
frequency performance at the pre-isolator may not be required because the sensitivity is
not limited by the control noise at the pre-isolator. While using the inertial sensors do not
lead to massive improvements in active isolation but could lead to potential problems, it is
not recommended to use the inertial sensors for inertial damping under the tight schedule
of KAGRA.

In comparison, sensor correction is inarguably a simpler and effective way of attenuat-
ing the microseism in the relative readout, if implemented correctly as in Sec. 8.3.3. The
H∞ sensor correction readout has the lowest noise RMS value compared to all sensors
presented and the sensor fusion with sensor correction scheme resulted in a slightly higher
RMS. Since many suspensions can share the same seismometer for sensor correction, the
same sensor correction filter can be replicated for all suspensions at close proximity, as-
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suming that the LVDT noise levels for the suspensions are similar. The only task that
need to be done individually for each suspension is the inter-calibration between the LVDT
readout and the seismometer readout, which is easy to achieve. Even if the task is not
done, the sole implementation of the sensor correction filter could lead to sub-optimal
seismic noise suppression, which is also undoubtedly useful. Therefore, the sensor correc-
tion scheme is a recommended way of achieve inertial damping, rather than using sensor
fusion.

9.1.4 On the results

The results of the H∞ method shown in Sec. 8.3 has undoubtedly show improvements
over the original KAGRA control filters. But, there is a caveat. The measurements in
the results are not direct confirmations of the improvement of the interferometer stabil-
ity, which is the quality that this research ultimately aims to achieve. This is because
the measurements are local readouts of only one suspension whereas the interferometer
stability is determined by the relative displacement between the suspended optics. In
principle, the improvements achieved by this research can be confirmed by measuring the
control signals of the interferometer, such as the differential arm length signal (DARM),
when the interferometer is locked. However, the interferometer of KAGRA, including the
signal-recycling cavity that involves the SRM suspension, was not available during the the
period that this research was conducted. Therefore, the results in this thesis only serve
as an indirect confirmation of stability improvements of the interferometer. The results
must be further confirmed in the future.

9.2 Future prospects

Besides some possible improvements regarding the H∞ method that are already discussed
in Sec. 9.1, there are more future works that can be done for active isolation systems in
gravitational-wave detectors in general. Here, a few possible future works are given.

The RMS value of a signal is often used as a figure of merit for quantifying active
isolation performance. However, the RMS value is typically dominated by low frequency
signals. Therefore, high frequency signals that have much lower order of magnitude are
typically not well informed. For this reason, instead of the H2 method that minimizes
the RMS value, the H∞ method is chosen to be used due to its capability of specifying
frequency-dependent upper bounds requirements. With that said, H2 and H∞ methods
are not mutually exclusive and there exists methods can be used to solve a mixed-H2/H∞

problem [76]. While the RMS value of signals, such as the test mass displacement, is
often capable of indicating the stability of the interferometer, it is worth developing a
mixed-H2/H∞ method for active isolation systems in gravitational-wave detectors. The
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aim is to achieve a minimization of the RMS value while achieving good noise attenuation
performance at high frequency.

As shown in Fig. 2.5, the seismic noise in at KAGRA can vary significantly within a
year. This would mean that the ideal controllers and control filters for active isolation may
vary accordingly. The H∞ methods provided in Sec. 8.1 can only lead to static controllers,
which are only optimal in one particular situation. At other times, the controllers are
rendered sub-optimal. This calls for an adaptive control approach in seismic isolation.

The LIGO detectors suffer from lock-loss due to distant earthquakes, which generate
seismic waves between 50mHz - 60mHz [77]. When the seismic waves hits the detectors,
the seismic waves are measured by the local seismometers, which are used for the sensor
correction of the relative sensors at LIGO. The sensor correction filters, like the ones in
Fig. 7.7 and 8.24, have noise simplification around the frequency of the seismic wave.
This means that the motions of the seismic waves are amplified and transmitted into
the motion of the suspensions via the sensor correction scheme. As a result, when this
happens, it results in a lock-loss of the interferometer, which ultimately leads to a reduced
in duty cycle. As a solution, a control scheme called “earthquake mode” is developed to
avoid such situation. In such scheme, two sensor correction configurations are prepared,
with one optimized for nominal condition focusing on the suppression of the secondary
microseism, and the other optimized for the earthquake mode which has a pass band at
lower frequency allowing the sensor correction for the increase seismic noise at 50mHz.
The latter is engaged when a seismic disruption is foreseen that could cause the seismic
noise to increase to a certain threshold. While this control scheme has successfully increase
the chances of keeping the interferometer lock during earthquakes, there is a drawback.
That is, the amplification of the seismometer noise at even lower frequencies and the
amount of amplification is the regardless of the magnitude of the earthquakes. This is not
ideal for smaller earthquakes as the seismometer noise amplification could theoretically be
reduced. With the H∞ method, it is possible to optimize the sensor correction according
to the detected seismic wave in real-time. In such case, the sensor correction filter is
optimal at all times. Therefore, the H∞ method could complement the earthquake mode
approach and combining the two would be an interesting research topic .

The static architecture of the control system has undoubtedly limited the control
performance due to the lack of adaptivity. Also, the classical filter-based control sys-
tem restricts the conversion from sensor signals to actuation signals to a certain way,
which ultimately limits the control performance of the active isolation. All of this is due
to the under-developed real-time control software used in current gravitational-wave de-
tectors, which limits control systems to be implemented in a certain way. The lack of
software development may be attributed to the fact that they have been working sta-
bly for gravitational-wave detectors. However, this is inevitably a burden for developing
advanced control methods for active isolation and interferometer control, which could
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potentially improve the interferometer stability. This may not be currently important for
current gravitational-wave detectors, but is important for future detectors such as the Ein-
stein Telescope and LIGO-india, which are detectors with higher sensitivities and hence
much tighter noise requirements. The earthquake mode may have provided an improve-
ment in interferometer stability but it is not perfect and there is always a risk of lock-loss
during the switching of operation modes due to the complicated procedures. In contrast,
modern control methods may not have this problem. For example, in a model predictive
control scheme [78], the control signals are optimized on-the-fly from the sensor signals
for a receding time horizon. If a seismic wave is foreseen, the model predictive controller
would autonomously take the seismic wave into account and optimize the control signals
according to the objective function. This provides the adaptivity that is required for
active isolation in gravitational-wave detectors and could, in principle, completely replace
the earthquake mode control scheme. And, because the model predictive control scheme
optimizes the control signals directly without subjected to limitations of control filters, it
could potentially achieve better control performance compared to a filter-based approach.
However, such advanced control methods cannot be implemented due to the limitation of
the software used in current gravitational-wave detectors. Therefore, the control software
used in gravitational-wave detectors need to be continually developed to accommodate
advanced control strategies in the future.
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