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Abstract. Sensor fusion is a technique used to combine sensors with different noise
characteristics into a super sensor that has superior noise performance. To achieve
sensor fusion, complementary filters are used in current gravitational-wave detectors to
combine relative displacement sensors and inertial sensors for active seismic isolation.
Complementary filters are a set of digital filters, which have transfer functions that are
summed to unity. Currently, complementary filters are shaped and tuned manually
rather than being optimized. They can be sub-optimal and hard to reproduce for
future detectors. In this paper, H∞ optimization is proposed for synthesizing optimal
complementary filters. The complementary filter design problem is converted into
an optimization problem that seeks minimization of an objective function equivalent
to the maximum difference between the super sensor noise and the lower bound in
logarithmic scale. The method is exemplified with three cases, which simulate the
sensor fusion between a relative displacement sensor and an inertial sensor. In all
cases, the H∞ complementary filters suppress the super sensor noise equally close to
the lower bound at all frequencies in logarithmic scale. The H∞ filters also provide
better suppression of sensor noises compared to complementary filters pre-designed
using traditional methods.
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1. Introduction

Vibration noise, such as seismic noise, is one of the major noise sources for
ground-based large-scale scientific instruments like interferometric gravitational wave
detectors. Current gravitational-wave detectors, such as interferometric gravitational-
wave detector like LIGO [1], Virgo [2], and KAGRA [3, 4], use multi-stage pendulums
to suspend the core optics of the interferometers, passively isolating them from high-
frequency external vibration in the detection band (10-1000 Hz) [5, 6, 7, 8, 9]. On top of
that, the pendulums are typically mounted on isolation platforms equipped with sensors
and actuators to actively isolating the vibration noise at lower frequencies (<10 Hz) and
damping the resonances of the pendulums [7, 9, 10]. External seismic disturbance, such
as the microseism [11], at lower frequencies can cause the suspended optics to move
excessively. This will cause the instruments to misalign, and in severe cases, result
in the temporary shutdown of the detectors. In fact, low frequency seismic noise has
ultimately limited the duty cycle of the LIGO and KAGRA detectors [12, 13]. Therefore,
active isolation is extremely important in these large-scale instruments and it remains
as an active research topic in the field of experimental physics.

Active isolation comes with the price of control noise addition. Control noise can
be injected to the detector, compromising the sensitivity of the detector, and must
be limited. One way to reduce the control noise is to lower the noises of the sensors
used for feedback control in active isolation. Recent research has been made to develop
low-noise inertial sensors for active isolation systems in gravitational-wave detectors
[14, 15, 16]. Inertial sensors can be used to achieve active isolation. They have good
noise performance at higher frequencies but have poor performance at lower frequencies
and could cause isolation platforms to drift. On the other hand, relative displacement
sensors, such as linear variable differential transformers (LVDTs) used in Ref. [9], have
lower noise at low frequencies. But they only measure relative displacement so they
cannot be used for active isolation. However, it is possible to utilize both sensors together
via a control strategy called sensor fusion. This way, active seismic noise isolation can
be achieved using the inertial sensors without drift.

Sensor fusion is a technique that combines two or more sensors to form a so-called
“super sensor” that can have superior noise characteristics than the individual sensors.
In this case, we assume the sensors to measure a common signal but have individual
uncorrelated intrinsic sensor noises. There are multiple ways to achieve sensor fusion,
such as the use of Kalman filters [17, 18] and complementary filters [19]. In particular,
complementary filters have been widely used in active isolation platforms in gravitational
wave detectors [10, 13, 20, 21, 22, 23, 24, 25, 26]. Complementary filters are a set of
digital filters that can take almost any arbitrary shape so long as their transfer functions
are summed to unity. The design of their shapes is important as it determines the
final noise performance of the super sensor. Although the technique is used in current
gravitational-wave detectors, the design methodology was not thoroughly discussed and
the filters designed were either sub-optimal and were hardly reproducible. While the



Optimal sensor fusion method for active vibration isolation systems 3

method will be adopted by detectors like KAGRA [9] and the Einstein Telescope [27], it
would be convenient to have a method to optimize complementary filters that minimize
the noise floor of the super sensors.

Past research has used particle swarm optimization to design sensor correction
filters at LIGO [28]. And, it was already shown that the detector can benefit from
improving control filter designs. While numerical optimization approaches can be used
to optimize complementary filters and other control filters, there are certain limitations.
The numerical approach requires control filters to take a specified form of transfer
function, e.g. 4 pairs of complex poles and 3 pairs of complex zeros in Ref. [28]. This
effectively limits the full parameter space to a much smaller subspace for optimization.
This is because control filters can have almost any arbitrary number of simple and
complex poles and zeros as long as it is stable and proper. This would mean that filters
from such an optimization approach may not truly be optimal, if the optimal filter does
not fall into the subspace that the numerical optimization takes place.

Recently, a complementary filter shaping method using H∞ synthesis was
proposed [29]. In the work, it was shown that H∞ methods can be used to optimize
complementary filters that satisfy frequency-dependent filter shape specifications. In
contrast to numerical optimization approaches, H∞ optimization assumes no predefined
structure of the filters. In this paper, we will extend the idea and propose to use H∞

methods to synthesize optimal complementary filters in such a way the super sensor
noise is minimized.

This paper is structured as follows. Sec. 2 gives an overview to the sensor fusion
technique using complementary filters and introduces H∞ methods for complementary
filter optimization. In Sec. 3, the optimization of complementary filters for the fusion
of typical sensors used in active isolation platforms of gravitational-wave detectors is
demonstrated. In Sec. 4, some discussions regarding the proposed method, limitations,
and future works are noted. In Sec. 5, a summary of this paper is given.

2. Methodology

2.1. Sensor fusion using complementary filters

Without loss of generality, let’s define complementary filters to be a set of filters whose
transfer functions are summed to unity, i.e.∑

i

Hi(s) = 1 , (1)

where Hi is the transfer function of the ith filter, and s is a complex variable. Each
complementary filter is filtering the output of the individual sensors and the filtered
signals are summed. The super sensor readout Xsuper(s) is therefore given by

Xsuper(s) =
∑
i

Hi(s)Xi(s) , (2)
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where Xi(s) is the sensor readout of the ith sensor. Each sensor is modeled as having
additive sensing noise Ni(s). So, each sensor readout Xi(s) reads

Xi(s) = X(s) +Ni(s) , (3)

where X(s) is the common signal that the sensors are all measuring. Substituting Eqn. 1
and Eqn. 3 into Eqn. 2, we get

Xsuper(s) = X(s) +
∑
i

Hi(s)Ni(s) . (4)

The super sensor readout Xsuper(s) is then equal to the common signal X(s) plus the
noise of each sensor filtered out by the complementary filters. As the sensors have
intrinsic noise Ni(s) with different frequency content, the goal of sensor fusion is to
design a set of complementary filters Hi(s) that achieve optimal trade-off between these
sensor noises at different frequencies.

2.2. H∞ synthesis

In H∞ methods [30], a system is specified in the generalized plant representation as
shown in Fig. 1.

Figure 1. Generalized plant representation

The augmented plant P has two inputs and two outputs. The inputs w and u are
the exogenous inputs and the manipulated variables respectively. And, the outputs z

and v are the error signals and the measurements respectively. Note that these variables
are vector valued in general.

In the open loop configuration, the input-output relation reads(
z

v

)
= P(s)

(
w

u

)
=

[
P11(s) P12(s)

P21(s) P22(s)

](
w

u

)
. (5)

When the loop is closed, the manipulated inputs u are generated from the measured
output v via a regulator K(s),

u = K(s)v . (6)
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In such configuration, the input-output relation becomes

z =
[
P11(s) + P12(s)K(s) (I − P22(s)K(s))−1 P21(s)

]
w , (7)

and the closed loop transfer function matrix is defined as

G(s;K(s)) ≡ P11(s) + P12(s)K(s) (I − P22(s)K(s))−1 P21(s) , (8)

where I is the identity matrix.
H∞ methods are used to synthesize H∞-optimal controllers for feedback systems.

H∞-optimal controller are stabilizing regulator that minimizes the H∞ norm of the
close-loop transfer function G(s;K(s)). So, the H∞ optimal controller can be seen as

K∞(s) = argminK(s)∈K ∥G(s;K(s))∥∞ , (9)

where K is the set of all controllers such that the closed-loop transfer function is stable
and ∥ · ∥∞ denotes the H∞ norm of a transfer function. The H∞ norm is defined as

∥G(s;K(s))∥∞ = sup
ω

σ̄(G(jω;K(s))) , (10)

where ω is the angular frequency, j is the imaginary number, and σ̄(·) denotes the
maximum singular value.

There are a few ways to approach H∞-optimal controller, including Riccati-based
methods [31] and LMI-based (linear matrix inequality) methods [32]. In this work, the
H∞ problems are solved using H∞ synthesis function control.hinfsyn() in the Python
Control Systems library control [33]. This function is a Python wrapper for SLICOT [34]
Fortran subroutine SB10AD, which is a function that computes H∞ optimal controller
using a modified version of the Riccati-based method [35]. The complementary filter
synthesis method is also made available with an open-source Python package called
Kontrol [36].

2.3. Complementary filter problem as an H∞ synthesis problem

Consider a two sensors configuration shown in Fig. 2. Two sensors are reading the
same signal X(s) but with different sensing noises, i.e. N1(s) and N2(s). The two
sensor readouts are filtered by complementary filters H1(s) and H2(s), respectively.
The filtered signals are summed eventually to become a super sensor which has the
noise term

Nsuper(s) = H1(s)N1(s) +H2(s)N2(s) , (11)

where Nsuper(s) is the sensing noise of the super sensor.
To convert the complementary filter synthesis problem to an H∞ problem, it has

to be expressed with the generalized plant representation as shown in Fig. 1. The
generalized plant representation of a two-sensor complementary filter configuration is
shown in Fig. 3.

The exogenous inputs w = (w1, w2)
T in Fig. 3 are arbitrary Gaussian processes that

have flat unitary amplitude spectral density. Ñ1(s) and Ñ2(s) are transfer functions
used to model the sensor noises N1(s) and N2(s) respectively. The amplitude spectral
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Figure 2. Block diagram of a two-sensor complementary filter configuration.

Figure 3. Complementary filter configuration augmented as a generalized plant.

densities of N1(s) and N2(s) are represented by the magnitude of these transfer functions,
i.e.

NASD
1 (ω) =

∣∣∣Ñ1(jω)
∣∣∣ , (12)

NASD
2 (ω) =

∣∣∣Ñ2(jω)
∣∣∣ , (13)

where NASD
1 (ω) and NASD

2 (ω) are the amplitude spectral densities (ASDs) of the sensor
noises N1(s) and N2(s). W1(s) and W2(s) are pre-compensators, which can be shaped
to specify the frequency-dependent specifications of the filtered sensor noises. Here, the
regulator of the plant is H1(s), which is the complementary filter for filtering the sensor
noise N1(s). The open-loop transfer matrix of the augmented plant is

P(s) =

[
0 Ñ2(s)W2(s) 1

Ñ1(s)W1(s) −Ñ2(s)W2(s) 0

]
. (14)

And, the closed-loop transfer function matrix is

G(s) =
[
H1(s)Ñ1(s)W1(s) (1−H1(s)) Ñ2(s)W2(s)

]
. (15)
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Consider the simplest case with W1(s) = W2(s) = 1, and noting that H2(s) =

1 − H1(s), the output of the augmented plant in Fig. 3 has an amplitude spectral
density equal to that of the super sensor noise in Eqn. (11). Using the plant with
W1(s) = W2(s) = 1 for H2 synthesis will give complementary filters that minimize the
H2 norm, which is equivalent to the expected root mean square (RMS) value of the
super sensor noise. This application may not be particularly useful as the RMS of the
super sensor noise is usually dominated by the low-frequency intrinsic sensor noise of
the inertial sensor. As a consequence, the H2 super sensor may not benefit from low
noise level of the inertial sensor at high frequency. While this configuration can be
useful for some applications, we seek for optimal complementary filters that can reduce
both sensor noises at all frequencies, where the level of sensor noises span a few orders
of magnitude. H∞ optimization can be a solution to this problem. This is because the
weights W1(s) and W2(s) can be specified as the reciprocal of the frequency-dependent
upper bounds of the filtered sensor noises H1(s)Ñ1(s) and H2(s)Ñ2(s), respectively.
Choosing the weights this way is similar to a standard mixed-sensitivity H∞ control
problem [37] where the weights can be used to specify the upper bounds of the closed-
loop sensitivity functions of a feedback system. In contrast, the weights do not have
special meanings in the context of an H2 problem.

To see how the weights can be chosen such that the super sensor noise is close to the
lower bound at all frequencies, one cost function that would be interesting in particular
is

J(H1(jω)) = max
ω

(
logNASD

super(ω;H1(jω))− logNASD
min (ω)

)
, (16)

where NASD
super(ω;H1(s)) is the ASD of the super sensor noise and NASD

min (ω) is the ASD of
the lower bound of the super sensor noise, defined as

NASD
min (ω) ≡ min

(
NASD

1 (ω), NASD
2 (ω)

)
. (17)

Minimization of the cost function Eqn. (16) would give optimal complementary filters
H1(s) and H2(s) ≡ 1−H1(s) that best suppress the super sensor noise equally close to
the lower bound at all frequencies in logarithmic scale.

To convert this cost function to the objective of the H∞ problem, consider the
frequency region where NASD

1 (ω) ≫ NASD
2 (ω). In this case, the super sensor noise in

Eqn. (16) could be approximated by

NASD
super(ω) ≈ |H1(jω)|

∣∣∣Ñ1(jω)
∣∣∣ , (18)

and the lower bound of the sensor noise is

NASD
min (ω) =

∣∣∣Ñ2(jω)
∣∣∣ . (19)

Substituting Eqn. (18) and Eqn. (19) into Eqn. (16), we get

J(H1(s)) ≈ max
ω

log
|H1(jω)|

∣∣∣Ñ1(jω)
∣∣∣∣∣∣Ñ2(jω)

∣∣∣
 . (20)
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Minimizing this is equivalent to minimizing a similar cost function without the
logarithm, i.e.

J ′(H1(jω)) = max
ω

 |H1(jω)|
∣∣∣Ñ1(jω)

∣∣∣∣∣∣Ñ2(jω)
∣∣∣

 . (21)

Now, let us find pre-compensators W1(s) and W2(s) such that the H∞ synthesis
of the generalized plant in Fig. 3 is equivalent as to minimizing the cost function (21).
Assuming that W1(s) and W2(s) are set such that the magnitude of the first term in
Eqn. (15) is much greater than the second term, the H∞ norm of the closed-loop transfer
function G(s) could be approximated as

∥G(s)∥∞ ≈ max
ω

(
|H1(jω)|

∣∣∣Ñ1(jω)
∣∣∣ |W1(jω)|

)
. (22)

Comparing Eqn. (21) and Eqn. (22), it is obvious that if W1(s) = 1/Ñ2(s), the two
cost functions become equivalent to each other. A similar argument can be made for
the case NASD

2 (ω) ≫ NASD
1 (ω), which gives W2(s) = 1/Ñ1(s). Therefore, by setting

the weighting functions W1(s) = 1/Ñ2(s) and W2(s) = 1/Ñ1(s), the H∞ norm of the
plant in Fig. 3 is approximately equal to maximum difference between the ASD of the
super sensor noise and its lower bound, as described by Eqn. (16). It follows that H∞

synthesis will give an optimal filter H1(s) while its complementary filter can be obtained
from the complementary condition, i.e. H2(s) ≡ 1−H1(s)

There is another simpler explanation behind these weighting functions W1(s) =

1/Ñ2(s) and W2(s) = 1/Ñ1(s). Again, the weighting functions W1(s) and W2(s) can
be thought as inverse frequency-dependent specifications of the sensor noises N1(s) and
N2(s), respectively [29]. When |N1(jω)| > |N2(jω)|, the target specification for N1(s) is
N2(s) but not lower. Any specification lower than that would be over-compensating as
the super sensor noise will be dominated by the higher one. Again, the same argument
can be made for N2(s). And, it follows that the weighting functions should be set as
W1(s) = 1/Ñ2(s) and W2(s) = 1/Ñ1(s), if there are no specific requirements for the
sensor noises.

2.4. Sensor noise modeling

To fully specify the generalized plant for a complementary filter sensor fusion
configuration shown in Fig. 3, Ñ1(s) and Ñ2(s) must be specified. They are the transfer
function models whose norms are shaped to fit the amplitude spectral densities of the
sensor noises NASD

1 (ω) and NASD
2 (ω), as in Eqn. (13). This problem can be as simple as

a curve fitting problem but with one caveat. That is, the inverse of the transfer function
models must be stable, minimum-phase, and proper as their inverse will be invoked.
This restricts the transfer function models to acquire the same number of zeros and
poles, all with negative real parts, meaning that they will have flat responses at very
low and very high frequencies. This should not be a problem so long as the features of
the sensor noises are modeled within a frequency of interest.
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There are a few ways to model noise spectral densities but this is not the main
purpose of this paper. For the completeness of the complementary filter method, a simple
but effective method is provided to model the sensor noises. But, readers are free to
model the sensor noises using their own method as long as the method results in transfer
function models with norms that fit well with the amplitude spectral densities of the
sensor noises in question. Also note that, as is the case for any H∞ problems, the solution
to the H∞ synthesis problem is only optimal relative to the cost function specified. This
means that the complementary filters synthesized this way will be optimal relative to
the modeled sensor noises, but not necessarily the real sensor noises.

We begin with a generic polynomial transfer function model

F (s; ai, bi) =

∑n
i=0 bis

i∑n
i=0 ais

i
, (23)

where ai and bi are the coefficients of the polynomial and n is the order of the transfer
function. The goal is to find optimal parameters that minimizes a cost function

Jnoise(ai, bi) =
M∑

m=1

(log |F (jωm; ai, bi)| − logN(ωm))
2 , (24)

where m = 1, 2, 3, . . . ,M , M is the number of data points, ωm are the frequency values
of the sensor noise data, and N(ωm) is the ASD of the sensor noise. As is mentioned,
the transfer function models need to have flat responses at very low and very high
frequencies. It is useful to pad the data with flat lines below and above the measurement
frequencies.

To minimize the cost function in Eqn. (24), local minimization methods are
recommended because the parameters ai and bi are usually not well bounded. For the
same reason, it is recommended to replace ai and bi with 10log ai and 10log bi in Eqn. (23)
and optimize log ai and log bi instead, as the parameters could vary with large orders
of magnitude. Local minimization methods, such as the Nelder-Mead method [38] and
Powell’s method [39], require initial specifications of the parameters, which can be hard
to obtain.

As an intermediate step, consider a zero-pole-gain (ZPK) model

FZPK(s; zi, pi, k) = k

∏n
i=1 s− zi∏n
i=1 s− pi

, (25)

where zi and pi are negative real-valued zeros and poles of the transfer function, and k

is the gain of the transfer function. These zeros and poles are corner-frequencies where
the amplitude frequency response changes slope by 20 decibels per decade. They can
be easily added and tuned manually to lay out the general shape of the model that fits
the sensor noise data. Alternatively, it is possible to replace F (s; ai, bi) in Eqn. (24)
with the ZPK model FZPK(s; zi, pi, k) and use global optimization methods, such as
differential evolution [40], to find the zeros and poles. This is possible since the zeros
and poles are expected to be bounded within frequency space of the measured sensor
noise data. Again, it is recommended to fit log zi and log pi instead due to their large
dynamic range. After obtaining a ZPK model, it can be expanded to the polynomial
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form to obtain the initial coefficients for the transfer function model Eqn. (23) used for
the local minimization of Eqn. (24). At last, all non-negative real parts of the zeros
and poles must be negated to obtain the final stable, minimum-phase, proper transfer
function that fits the ASD of the sensor noise.

The choice of the transfer function order n during the ZPK fitting depends on the
frequency dependency of the noise profile. In general, this order needs to be higher than
the most significant frequency dependency of the noise. For example, if the ASD of the
sensor noise has a 1/f−3.5 dependency, a choice of n = 4 would be a reasonable (and
often sufficient) choice for initialization. Increasing n would necessarily lead to a better
fit of the noise spectrum. However, in practice, it was shown a choice of an excessive n

would lead to pole-zero cancellation at irrelevant frequencies during the transfer function
fit, which are useless features for the model. This is typically a good termination point
when trying with different n.

3. Results

In this section, the proposed H∞ method is used to synthesize three different pairs
of sensors. The sensors to be considered are linear variable differential transformers
(LVDTs) and geophones, which are commonly used in active isolation systems in current
gravitational-wave detectors. The three configurations are

(i) LVDT and geophone with sensor noises estimated from Ref. [23].

(ii) LVDT with seismic noise coupling and geophone.

(iii) Hypothetical LVDT-like and geophone-like sensors.

Again, the H∞ complementary filters are obtained by H∞ synthesis, which seek an
optimal filter H1(s) that optimized the H∞ norm, Eqn. (10), of the closed loop transfer
matrix defined by Eqn. (15).

3.1. Sensor fusion of a relative displacement sensor and an inertial Sensor

In this section, the proposed method will be demonstrated by synthesizing
complementary filters for blending an LVDT and a geophone, referred to as sensor
1 and sensor 2, respectively. The sensor noises are taken from Figure 5.8 in Ref. [23],
and can be well described by Eqn. (26).

NASD(f ;na, nb, a, b) =

[(
na

fa

)2

+

(
nb

f b

)2
] 1

2
µm√
Hz

, (26)

where f is frequency in Hz, na, nb, a, and b are some parameters of the model. For
demonstration, the parameters are chosen by a graphical estimation from a figure shown
in Ref. [23]. The parameters for the two sensors are summarized in table. 1.

The amplitude spectral densities of the sensor noises and their transfer function
models are shown in Fig. 4. In this case, sensor noise 1 is fitted with a 3rd-order transfer
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Table 1. LVDT and geophone intrinsic noise parameters.

Sensor na nb a b

LVDT 10−2.07 10−2.3 0.5 0
Geophone 10−5.46 10−5.23 3.5 1

function while sensor noise 2 is fitted with a 4th-order one. The selection of the two
transfer function orders is based of the exponents a and b of each sensor noise profile as
shown in table. 1. The order are chosen to be the smallest integer that is larger than
both a and b.

As shown in Fig. 4, the amplitude responses of the transfer functions fit well to the
ASD of the sensor noises.

The transfer functions are used to synthesize complementary filters according to
the proposed method. The complementary filters synthesized using H∞ method are
shown in Fig. 5.
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Figure 4. Amplitude spectral densities of the sensor noises and the transfer function
models. Blue solid: LVDT intrinsic noise. Orange dash-dot: transfer function model
of the LVDT noise. Green dashed: geophone intrinsic noise. Red dotted: transfer
function model of geophone noise.

Using the synthesized filters H1(s) and H2(s) ≡ 1−H1(s), the amplitude spectral
density of super sensor noise is predicted by

NASD
super(ω) =

[∣∣H1(jω)N
ASD
1 (ω)

∣∣2 + ∣∣H2(jω)N
ASD
2 (ω)

∣∣2] 1
2
. (27)

The predicted ASD of the super sensor noise is shown in Fig. 6. As can be seen, the super
sensor noise is equally close to the lower bound in logarithmic sense at all frequencies,
as expected.
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Figure 5. Complementary filters. Blue: low-pass filter for the LVDT. Orange: high-
pass filter for the geophone.
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Figure 6. Amplitude spectral densities of the sensor noises. Blue solid: LVDT noise
model. Orange: geophone noise model. Green dashed: predicted super sensor noise.

3.2. Sensor fusion for a seismic-noise-coupled relative displacement sensor and an
inertial sensor

In this section, the sensor fusion of a seismic-noise-coupled displacement sensor (LVDT)
and an inertial sensor (geophone) is demonstrated and compared.

LVDTs are relative displacement sensors. When they are used on the first stage
of an active isolation platform, they read relative displacements between the suspended
platform and the ground. The ground motion in the LVDT readout is an unwanted
signal for active isolation. Therefore, the seismic noise is often considered a part of the
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LVDT noise. The seismic noise features a peak around 0.1-0.5 Hz, which correspond to
the secondary microseisms. If this is not filtered, the microseismic disturbance cannot
be actively attenuated. Or, in the worst case, the seismic noise will be injected to the
isolation platform. Pre-designed complementary filters lack a quality that effectively
suppresses the microseism while the H∞ method can take the microseismic peak into
account and optimize filters that can better attenuate the seismic noise. To take seismic
noise into account, the LVDT noise model is reused from Sec. 3.1 but is multiplied by
a transfer function:

Nseis(s) =
4∏

i=1

1
ω2
i
s2 + 1

ωi
s+ 1

1
ω2
i
s2 + 1

ωiqi
s+ 1

, (28)

where ωi = 2π×{0.15, 0.2, 0.25, 0.3} rad/s, and qi = 3. This will simulate a microseismic
peak around 0.2 Hz.

The other sensor to be blended with this LVDT sensor is the geophone used in
Sec. 3.1. The sensor noise models are shown in Fig. 7. The transfer function models
of the seismic-noise-coupled LVDT noise and the geophone noise are used to synthesize
optimal complementary filters shown in Fig. 8 (Blue and orange solid lines).
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Figure 7. Amplitude spectral densities of the sensor noises and the transfer function
models. Blue solid: Original intrinsic LVDT noise. Orange dashed: transfer function
model of the seismic-noise coupled LVDT sensor noise. Green dash-dot: transfer
function model of the geophone noise.

The pre-designed complementary filters to be compared with are 7th-order filters
with 4th-order roll-off. These filters were pre-designed specifically to use with this sensor
fusion configuration in Ref. [23]. The filters were chosen to suppress the inertial sensing
noise, which has a frequency dependency of f−3.5 at low frequency. There is only
one design parameter for the pre-designed filter, that is, the blending frequency. The
blending frequency in this case is chosen to be at the crossover frequency between the
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LVDT and geophone noise, as advised in Ref. [23]. In this case, the blending frequency
of the pre-designed filters is 64.47 mHz. The pre-designed complementary filters are
also shown in Fig. 8 (greed dashed and red dash-dot lines).
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Figure 8. Complementary filters. Blue solid: low-pass filter for seismic noise-
coupled LVDT, synthesized using H∞ method. Orange solid: high-pass filter for
geophone, synthesized using H∞ method. Green dashed: pre-designed low-pass filter
for the seismic noise-coupled LVDT. Red dashed: pre-designed high-pass filter for the
geophone.

As can be seen, the low-pass filter (blue solid line in Fig. 8)) generated using the
proposed H∞ method has a notch feature around 0.1-0.3 Hz. Compared to the pre-
designed filter, this provides significantly higher seismic noise attenuation around the
microseismic frequency. Conventionally, the additional notch features in the low-pass
filter were artificially added. Example filters can be found in Refs. [10, 25]. In contrast,
the notch feature is a natural result of the H∞ optimization.

Fig. 9 shows the predicted super sensor noise performance using the H∞-optimal
complementary filters.. As can be seen, the noise of the H∞ super sensor kept an
amplitude spectral density close to the lower bound at all frequencies, including the
frequency range of the seismic noise peak.

In Fig. 10, the noise performances of the super sensor using H∞ filters and the
pre-designed filters are compared. The expected RMS values of the sensor noises are for
comparison and it is defined as

NRMS(f) =

[∫ ∞

f

NASD(f ′)2 df ′
] 1

2

, (29)

where NASD(f) is the amplitude spectral density of the sensor noise. The expected
RMS value of each super sensor noise is shown as blue dashed line and orange dashed
line in Fig. 10. In this case, the expected RMS integrated from 10 Hz to 0.01 Hz. The
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Figure 9. Sensor sensor noise. Blue solid: seismic-noise-coupled LVDT noise model.
Orange solid: geophone noise model. Green dashed: super sensor with H∞-optimal
complementary filters.
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Figure 10. Sensor sensor noise comparison. Blue solid: noise of the super sensor
using H∞ complementary filters. Blue dashed: expected RMS value of the H∞ super
sensor noise. Orange solid: noise of the super sensor using pre-designed complementary
filters. Orange dashed: expected RMS value of the pre-designed super sensor.

expected RMS of the H∞ and pre-designed super sensors are 0.06836 µm and 0.09403
µm, respectively. Note that these values are one type of performance indexes only
and no definitive conclusions should be made as long as they fall into the same order of
magnitude. Moreover, the cost function of the H∞ optimization is not necessarily related
to the expected RMS. Therefore, there is no guarantee that the H∞ super sensors will
always have a lower noise level in terms of the expected RMS. To minimize the expected
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RMS, H2 synthesis could be used instead but this is not the purpose of this paper.
One way to evaluate the seismic attenuation performance of the sensor sensors

would be comparing the suppression ratio between the original LVDT noise and the
super sensor noises at the microseismic peak. In this particular example, the peak of
the LVDT noise spectrum is located at 0.231 Hz and the noise level is 0.2829 µm/

√
Hz.

At the microseismic peak, the ASDs of the H∞ super sensor noise and the pre-designed
super sensor noise read 0.004499 µm/

√
Hz and 0.04614 µm/

√
Hz, respectively. They

offer a suppression ratio of 62.89 and 6.131 for the H∞ case and the pre-designed case,
respectively. This means the H∞ filters provide more than an order of magnitude
attenuation of microseismic noise compared to the pre-designed filters.

3.3. Sensor fusion of hypothetical relative displacement sensor and inertial sensors

There are many types of sensors that can be used to achieve sensor fusion in active
isolation systems. They all contain different sensor noise profiles and undoubtedly
would require different sets of complementary filters if they are used in a sensor
fusion configuration. Generally, reusing complementary filters from another sensor
configuration would lead to sub-optimal performance or even lead to unnecessary noise
amplification. Therefore, complementary filters must be redesigned for new sensor
configurations and the proposed H∞ method provides a convenient way to do so.

To exemplify this, two new sensor noise profiles are considered in this section. The
ASD of the two sensor noise profiles are simply

NASD
1 (f) = 1

µm√
Hz

(30)

and

NASD
2 (f) =

0.1

f

µm√
Hz

. (31)

Fig. 11 shows the amplitude spectral densities of the hypothetical sensor noises.
Complementary filters were synthesized using the proposed H∞ method and they

are shown in Fig. 12 together with the pre-designed filters. The pre-designed filters
have the same shape as those in Fig. 8 but with a new blending frequency at 0.1 Hz,
i.e. where the two sensor noises meet. As shown in the figure, the H∞-optimal filters
have a milder roll-off and with no noise amplification around the blending frequency.

The predicted noise performances of the super sensors are shown in Fig. 13. As
can be seen, the super sensor fused with H∞-optimal filter has sensor noise almost
indistinguishable from the lower bound at all frequencies. Meanwhile, the super sensor
fused with the pre-designed filter has a noise peak of 4.457 µm/

√
Hz at around the

blending frequency at 0.1 Hz, amplifying the noise. This is a result of over-suppression
at lower and higher frequencies, which is one problem that the H∞ method aims to
avoid. This makes the pre-designed filter relatively unsuitable for this particular sensor
configuration. In comparison, the H∞ super sensor has a maximum noise amplification
of 1.397 times, and the maximum ASD of the noise is 1.397 µm/

√
Hz at 0.01 Hz.
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Figure 11. Sensor noise. Blue solid: sensor 1. Orange dash-dot: transfer function
model of sensor 1 noise. Green dashed: sensor 2. Red dotted: transfer function model
of sensor 2.
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Figure 12. Complementary filters. Blue solid: low-pass filter for sensor 1, synthesized
using H∞ method. Orange solid: high-pass filter for sensor 2, synthesized using H∞
method. Green dashed: pre-designed low-pass filter. Red dashed: pre-designed high-
pass filter.

4. Discussions

Using the proposed method, it is possible to synthesize optimal complementary filters
that best suppress the super sensor noise equally close to the lower bound at all
frequencies in logarithmic scale. Unlike pre-designed filters, the method allows one to
make complementary filters that work with any arbitrary sensor, as long as the sensor
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Figure 13. Sensor sensor noise. Green dashed: super sensor with H∞-optimal
complementary filters. Red dash-dot: super sensor with pre-designed complementary
filters.

noise can be modeled. Optimal complementary filters can be generated from only the
sensor noises themselves. In all the results shown, the complementary filters generated
from H∞ optimization performed better, compared to the pre-designed ones. And, the
H∞ method provides a new way of optimizing complementary filters for virtually any
type of sensor fusion configurations. This will be extremely useful for future detectors
such as the Einstein Telescope.

The method is able to produce complementary filters with special features, such as
notches, to cope with the special noise characteristics in sensors. In a conventional
filter shaping process, these special features would need to be added manually by
control experts based on practical experience. This would make the filters arguably
sub-optimal, and most importantly, not reproducible. But, with the proposed method,
the features automatically appear in a natural way as a result of optimization. None
or little human intervention is required in the whole synthesis process. Also because
of this, this opens up the possibility of rolling-update of control filters where filters are
synthesized automatically in real-time according to changes in the environment, e.g.
changes in seismic noise.

To use the H∞ method, one requires to model the frequency content of the sensor
noises as transfer functions. For other methods, an empirical model may suffice.
Modeling noise spectrum with transfer functions can be difficult as the amplitude
spectrum of sensor noises typically has fractional frequency-dependency, such as 1/f 3.5.
This is not well represented by transfer functions since the transfer functions typically
have integer order corresponding to the number of zeros and poles of the underlying
system. One needs to use a higher-order transfer function to represent a sensor noise
that has a lower-order fractional frequency-dependency, as is done in Sec. 3.1. As a
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consequence, the noise models fluctuate with a small magnitude around the sensor noises
as shown in Fig. 5. It should be noted that the error in modeling is small compared
to the relative difference between the two sensor noises. This type of error in modeling
may not be significant as the important quantity in the cost function is the relative
difference between the noises. In this case, the super sensor would be sub-optimal in the
sense that the super sensor noise fluctuates, with a small magnitude, around the truly
optimal one. Another source of modeling error is measurement error, i.e. the model is
fitted to a measurement that does not capture the real frequency content of the sensor
noise. This error is common to all methods. This is not an exclusive problem of the
H∞ problem and must be solved independently as a modeling problem. The error in
modeling may not have a significant effect on the design of the feedback controller for
active isolation since they are separate processes. The real super sensor noise can always
be estimated or measured so the controller designer can design controllers around the
real data.

There are a few problems that need to be addressed for practical implementation
of complementary filters. These problems are not necessarily exclusive to the H∞

approach, but will cause degradation to the H∞ filters, making them less than optimal.
The inter-calibration and alignment between the sensors need to be done well, or
else the super sensor response will not be unity. Moreover, the inertial sensors often
require a calibration filter that represents their inverse dynamics. Mismodeling of
the inverse dynamics leads to frequency-dependent calibration mismatch between the
inertial sensors and other sensors, which will also cause the super sensor response to be
distorted. The inertial sensor readouts also require substantial prefiltering at an early
stage in the control signal path to avoid overflow at low frequency due to integration.
The prefilters add additional attenuation on top of one of the complementary filters,
effectively making the complementary filters not complementary. All of these could cause
spurious responses in the control system that could lead to limited control performance
or even lead to instability. A post processing treatment of the complementary filters
to account for prefilters is proposed in Ref. [24]. However, the treatment could ruin
the result of the H∞ optimization and hence is not preferred. A future paper will
focus on the practical implementation of the H∞ complementary filters along with the
experimental results.

The proposed H∞ method complements some existing control strategies in active
isolation systems in current gravitational-wave detectors. A control strategy was
used in LIGO called “earthquake mode” where a pre-designed filter is swapped with
another one when there is an anticipated earthquake that could cause a lock-loss of the
interferometer [13, 22]. These filters were made without any information of the upcoming
earthquake or seismic noise, which means the filters could again be sub-optimal. But
with the proposed method, the filters can be synthesized in real-time, making the active
isolation truly adaptive to the environment and ultimately increasing the duty cycle of
the detector.

Active isolation systems in GW detectors use many control filters other than



Optimal sensor fusion method for active vibration isolation systems 20

complementary filters that to achieve active alignment control and seismic isolation.
Some examples would be the sensor correction filter, the seismometer feedforward filter,
and the feedback controller, which are all used in LIGO [10, 28]. Sensor correction filter
is a filter used in LIGO that applies on a seismometer, which is used to remove seismic
noise coupling from relative displacement sensors, making them available for seismic
isolation via feedback control. Seismometer feedforward filter is a similar filter but is
used for cancellation of the seismic noise by feeding seismometer signal to actuators.
Feedback controllers are digital filters that convert sensing signals to actuation signals
to achieve feedback control, which minimizes the displacement level of a controlled
platform to achieve active isolation. While not shown in this paper, we claim that all
of these filter design problems can be treated as a complementary filter design problem
because they are all optimization problems seeking an optimal trade-off between two
frequency dependent quantities such as seismic noise and sensor noise. So, they can
all be solved using the method provided for synthesizing complementary filters. These
problems will be solved and demonstrated in future work.

Although it is shown that optimal complementary filters can be synthesized for a
sensor fusion configuration with two sensors, active isolation systems can utilize even
more sensors. For example, some active isolation platforms in LIGO are equipped
with relative displacement sensors, geophones, and seismometers [10]. This requires
a low-pass filter, a band-pass filter, and a high-pass filter for sensor fusion of these
three sensors. Although it was shown that H∞ methods can be used for synthesizing
complementary filters for any arbitrary number of sensors if frequency-dependent
specifications are given [29], the minimization of super sensor noise in a three-sensor
configuration was not. Therefore, it remains as a future work and will be studied as an
extension of this paper.

5. Conclusion

Sensor fusion is a technique that combines multiple sensors into one super sensor
that has better noise performance. Complementary filters are used for sensor
fusion in active isolation systems in gravitational-wave detectors. While conventional
designs of complementary filters can be sub-optimal and irreproducible, a method is
proposed to synthesize complementary filters in the H∞-optimal sense. The generated
complementary filters minimize the noise of the super sensor at all frequencies, making
it equally close to the lower bound at all frequencies in the logarithmic sense. The
proposed method only uses information of the sensor noise and requires minimal human
intervention. The effectiveness of the synthesis was demonstrated in sensor fusion
application using typical noises of sensors used in current gravitational wave detectors.
It was shown that the method gives complementary filters that perform better than a
pre-designed one and necessary features in the filters, such as notches, can be generated
naturally as a result of optimization. Also, it was shown that pre-designed filters cannot
be reused in a new environment while this method adapts and makes new complementary
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filters that are optimized for the new environment. Other control problems in active
isolation systems, such as sensor correction, feedforward, and feedback control problems,
can be treated as complementary filter problems and hence can be solved using the same
method. With the H∞ method, current GW detectors can be benefited from improved
control performance and optimal control filters for active isolation can be designed easily
for upcoming GW detectors such as the Einstein Telescope.
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