Newtonian Noise Measurement with TOrsion-Bar Antenna

Satoru Takano, Ching Pin Ooi, Yuka Oshima, Yuta Michimura, Masaki Ando The Univ. of Tokyo 9/11/21 KAGRA FWG open meeting @ online

Newtonian Noise

Newtonian noise: comes from local gravity gradient fluctuation

6

- Seismic waves
 - body wave
 - surface wave
 - etc.
- Atmospheric fluctuation
 - temperature fluctuation
 - infrasound waves
 - etc.
- Moving masses
 - water
 - human activity

KAGRA FWG

))

Seismic Wave

- Seismic waves:
- body wave
 - oP-wave: compressional wave
 - oS-wave: shear wave
 - propagate though media

- surface waves
 - oRayleigh wave
 - propagates on the surface of media
- can be divided by surface and bulk contribution

Rayleigh Wave

https://earthquake.usgs.gov/learn/glossary/images/rayleigh_web.jpg

KAGRA FWG

NN in KAGRA

surface NN and **bulk NN** in KAGRA site based on Somiya+ (2012)

Estimated to be enough small for seismic

Other source could affect sensitivity

09.11.2021

NN in 3G Detectors

For 3G detectors NN could be a dominant noise source in low frequencies

Strategy

- Basically NN cannot be distinguished from GW signal
- Coupling path is simple, but modeling is complicated

Model test by direct measurement

Torsion Bar Antenna (TOBA)

TOBA : TOrsion-Bar Antenna

- Gravitational wave detector using two torsion pendulums
- GW detector = Gravity Gradiometer
- Resonant frequency of torsion pendulum ~ mHz
 - → Sensitive to **low frequency** (~ 0.1Hz)
- Target sensitivity $h \sim 10^{-19} / \sqrt{Hz} @ 0.1 Hz$ with 10 m bars

Development Plan

09. 11. 2021

KAGRA FWG

Setup of Phase-III TOBA

Design Sensitivity

09. 11. 2021

Direct Measurement of NN with TOBA

TOBA sensitivity vs NN estimation

- Phase-III TOBA can measure NN directly below 0.1 Hz
- Higher S/N for Final TOBA

Development Items

Cryogenic Suspension System

- Cooling System → Cooled down to 6.1 K
- High-Q suspension fiber
- Optical System
 - New angular sensor with higher sensitivity
 - Monolithic interferometer under cryogenic temp.
- Active Vibration Isolation
 - Reduction of translational seismic noise

→ Reduced by **1/1000** at most

Reduction of vibration induced by cooler

Cryogenic Suspension System

- Cool down TMs to 4 K
- Two radiation shields

Suspension wire

- Si wire
- High Q value (>10⁸)

Heat Links

- High-purity aluminum
 - Conductive cooling

09. 11. 2021

KAGRA FWG

Current Suspension System

Test for cryogenic, simplified configuration

- Silicon fiber \rightarrow CuBe wire
- Heatlinks between IM and TMs
- Readout: only optical levers

09. 11. 2021

Current Setup

Cooling Result

Cool down to 6.1 K

• Slower cooling speed \rightarrow Bad heat contact?

Sensitivity of differential motion

Active Vibration Isolation System

- Reduction of seismic vibration
 - Coupling from horizontal vibration
 - ▶ 10⁻⁷ m/√Hz @ 0.1 Hz
 - Nonlinear coupling
 - ▶ 10⁻¹⁰ m/√Hz @ 1 Hz

Measure motion at the suspension point by seismometer & tilt meter

Feedback the signal to actuators to cancel out the motion

 Reduction of vibration induced by cooler

Active Vibration Isolation System

- Tested w/o the suspension and the cryostat
- Tiltmeter is not install

- Sensor: L4C (inertial) x6, PS (local) x6
- Actuator: PZT (range: ~60µm) x6

Performance of AVIS

09. 11. 2021

High-Q Suspension Fiber

- Measurement of torsional Q of Sapphire fiber
- Coefficient of expansion is larger for CuBe than sapphire

After cooling:

Broken piece

15

credit: C. P. Ooi

Before

High-Q Suspension Fiber

- Achieved to 7x104 at 4 K
- · Currently seemed to be limited by loss at the clamp
- Q ranged from 3 000 to 70 000 at 4 K
- Single clamp mode
 - Due to breakage
- Adjustments have been made to shift the pendulum frequency ^o from the torsion frequency
 - Cannot be ruled out as source of interference

credit: C. P. Ooi

09. 11. 2021

High Sensitive Angular Sensor

An improved wave front sensor

- Enhance angular signal by resonating both HG00 and HG10
 - Ordinary it's impossible due to Gouy phase shift
 - Compensate it by an auxiliary cavity

High Sensitive Angular Sensor

- Demonstration was done
 - Still need further improvement

A new prototype is under development

Monolithic Interferometer

09.11.2021

KAGRA FWG

25/27

Monolithic Interferometer

Component selection is on going

Bonding

Collimator

09. 11. 2021

KAGRA FWG

Summary

- Direct measurement of Newtonian Noise with TOBA
- $S/N > 10^3$ in f < 0.1 Hz
- Put upper limit 10⁻²¹ @ 10 Hz on NN of KAGRA
- Current achievement
- Cryogenic \rightarrow basically demonstrated
 - Need some improvements (cooling speed, achieved temp.)
- Active isolation vibration \rightarrow 3 DoF controlled
 - Decouple tilt motion from horizontal translation
- On-going issues
- Development of high-Q silicon fiber
- Demonstration of coupled WFS
- Cryogenic monolithic interferometer

Seismic NN in Different Scale

• Response from Rayleigh waves to NN (arm: x direction)

Seismic NN in Different Scale

- Rayleigh wave length: $\lambda \sim 30$ m @ 10 Hz (v ~ 300 m/s)
- TOBA: L ~ 10 m KAGRA, Advanced Virgo: L ~ 3km

 more sensitive ET: L ~ 10 km

Optical System

High sensitive angular sensor Measure HG10 mode induced by rotational motion

KAGRA FWG

Stray Light Problem

Front reflection at

- Cube BS
- QPD surface

Stray light

Interference with stray light contaminates oplev signal

Sensitivity of one TM

- Limited by beam jitter, interference of stray light
- Unexpected noise: magnetic noise due to eddy current flowing TM

Beam Jitter Control Noise

- Some coherence btw TM oplev yaw & Jitter QPD sum
 - Beam jitter control signal shakes beam additionally
 - Contaminates oplev signal

Coherence btw TM oplev yaw & QPD sums

10

5% residual assumptioncan be explained the noise budget well

09. 11. 2021

Magnetic Noise Due to Eddy Current

- Ambient magnetic fluctuation induces eddy current
 - TM has magnetic dipole moment $\tilde{\mu}$

This $\tilde{\mu}$ induces torque noise $\tilde{\mu} \times B$ with DC magnetic field B

Magnetic Noise Due to Eddy Current

Induced eddy current \propto electric \dot{c} 10^{-2} 8.1 K 35.0 K 10.0 K 40.0 K 80.0 K 45.0 K 15.0 K 102.5 K 50.0 K For metals electric conductivity gets larger when cooled down Coupling gets larger at lower temperature Frequency [Hz]

 10^{-1}

10

High Sensitive Angular Sensor

Cavity-enhanced wave front sensor (new idea)

- Compensate Gouy phase difference between HG00 and HG10
 - HG10 mode resonates as well as HG00
 - Induced HG10 is enhanced
 - Higher sensitivity than normal WFS 5×10⁻¹⁶ rad/√Hz @ 0.1 Hz
- How to compensate

Local Quadrature Interferometer

- Quadrature Interferometer for a local sensor of AVIS
- Michelson interferometer with a dithered reference mirror
 - Resolution: same as Michelson interferometer
 - Range: ∞ (ideally)
- No polarization optics
- Generate quadrature signal by moving reference mirror

Picture

09. 11. 2021

KAGRA FWG

Performance

09. 11. 2021