Demonstration of improving the GW-sensitivity with a long signal recycling cavity

> Kentaro Komori, Sotatsu Otabe, Kentaro Somiya JAXA/ISAS, Tokyo Institute of Technology

> > KAGRA FWG meeting 2021/11/09

Summary

Motivation of detection of high frequency gravitational waves

Introduction

- ≻90 events detected by LIGO-Virgo so far
 - Population of binary black holes
 - Binary neutron stars and multimessenger astronomy
 - GR test
 - Hubble constant measurement
- ≻Multi-wavelength GWs
 - Primordial GW (CMB)
 - Supermassive BH (PTA)
 - Massive BH (LISA)

Motivation

≻High frequency GWs

Frequency	~kHz	Above kHz
Science	 Equation of state of NS Sky localization Pulsar ellipticity Harmonics of BBH ringdown 	 Merger of primordial BHs BH supper radiance Phase transition in the early Universe
Detector	 NEMO LIGO-HF KAGRA-HFF 	 New-type Levitated sensors Bulk acoustic wave Interferometer

PASA 37, e047 (2020)

Method

- ≻Long signal recycling cavity (LSRC)
 - Planned to be used in future detectors targeting at BNS merger frequency (~kHz)
 - No demonstration so far at a table-top scale experiment
 - Useful technique for short interferometers towards various precise measurement

Sensitivity calculation

≻Quantum noise

 h_{SQL}^2 : SQL sensitivity

$$S_{h} = \frac{h_{SQL}^{2}}{2} \left(\mathcal{K} + \frac{1}{\mathcal{K}} \right) \qquad S_{h,shot} = \frac{h_{SQL}^{2}}{2\mathcal{K}} \qquad \mathcal{K} = \left(\frac{\omega_{SQL}}{\omega} \right)^{2} K(\omega)$$
Radiation pressure noise
SRM amplitude reflectivity
Conventional $\frac{1}{K(\omega)} = 1 + \frac{(1-r)^{2}}{(1+r)^{2}\gamma^{2}} \omega^{2} \qquad (L_{src} \to 0)$
Arm cavity line width
Non-zero
SRC length $\frac{1}{K(\omega)} = 1 + \frac{(1-r)^{2} - 8rL_{src}\gamma/c}{(1+r)^{2}\gamma^{2}} \omega^{2} + \frac{4rL_{src}^{2}/c^{2}}{(1+r)^{2}\gamma^{2}} \omega^{4}$

Amplitude sensitivity

Dip in the sensitivity

The negative ω^2 term generates the dip when $T_{srm}^2 < 8T_i L_{src}/L_{arm}$

Dip frequency:
$$f_{dip} = \frac{c}{8\pi} \sqrt{\frac{T_i}{L_{arm}L_{src}}}$$
 ~KHz with km-scale arm
~MHz at table-top scale

Depth:
$$d_{dip} = \frac{T_{srm}}{2} \sqrt{\frac{L_{arm}}{T_i L_{src}}}$$

 T_i : ITM transmissivity L_{arm} : arm length

$$\frac{d_{dip} \widehat{\downarrow}}{f_{dip}} \xrightarrow{\omega^2}$$

Non-zero
SRC length
$$\frac{1}{K(\omega)} = 1 + \frac{(1-r)^2 - 8rL_{src}\gamma/c}{(1+r)^2\gamma^2}\omega^2 + \frac{4rL_{src}^2/c^2}{(1+r)^2\gamma^2}\omega^4$$

Experiment plan

Demonstration of LSRC at the table-top scale with SRFPMI

Optics layout

Interferometer

Modulation and detection

Transfer function measurement

Future

>Demonstration of the signal enhancement and the sensitivity dip

- Constructing the experimental setup
- Transfer function measurement around MHz
- Shot noise measurement
- Squeezing
- Search for MHz GWs
 - Sensitivities are determined only by the input power at high frequencies
 - Increasing the input power with the power recycling up to O(100 W)

≻Other applications

- Holographic noise (holometer)
- Axion and dark matter

