

香港中文大學 The Chinese University of Hong Kong

Introduction: Complementary Filters at KAGRA

- The pre-isolators of Type-A and Type-B suspensions in KAC equipped with relative sensors and inertial sensors.
- A pair of complementary filters (low-pass and high-pass) car combine the sensors into a virtual "super-sensor" that has s properties.
- \blacktriangleright In this work, we discuss a scheme that uses \mathcal{H}_{∞} methods to complementary filters that optimally blend the sensors accor sensor noises.

Figure 1: Type-A suspensions: input/end test masses, Type-B suspensions: k signal-recycling mirrors, Type-Bp suspensions: power-recycling mirrors, and suspensions: input/output mode cleaners [1].

Methodology: Complementary Filter Problem as an 7

\mathcal{H}_{∞} method in a nutshell:

- 1. As shown in Fig. 2, define signals w, z, u, and v, and hence,
- 2. derive a generalized plant P(s).
- 3. \mathcal{H}_{∞} synthesis gives an \mathcal{H}_{∞} optimal controller $K_{\infty}(s)$ that minimizes the \mathcal{H}_∞ -norm of the closed-loop plant $\|\mathbf{G}(s; \mathbf{K}, \mathbf{P})\|_{\infty}$.

Figure 2: Generalized Plant

 \blacktriangleright The close-loop transfer function $\mathbf{G}(s)$ is defined such that z and $u = \mathbf{K}(s)v$, i.e.

$${f G}(s) = P_{11}(s) + P_{12}(s){f K}(s)\left[{f I} - P_{22}(s){f K}(s)
ight]^{-1}{f K}(s)$$

 \blacktriangleright The \mathcal{H}_{∞} -norm is defined as

$$\|\mathbf{G}(s)\|_{\infty} = \sup \bar{\sigma}(\mathbf{G}(j\omega))$$

where $\bar{\sigma}$ denotes the maximum singular value and ω is the trequency.

Optimal Sensor Fusion using \mathcal{H}_∞ methods Terrence T.L. Tsang on behalf of the KAGRA Collaboration

The Chinese University of Hong Kong. Email: ttltsang@link.cuhk.edu.hk

	Methodology: Complementary F	ilter	Pro
GRA are	Formulating the complementary f	filter	pro
an be used to superior noise	Complementary filter configuration: $N_1(s), N_2(s)$: sensor noises, $H_1(s), H_2(s)$: complementary filters, $N_{super}(s)$: super sensor noise.	•••••	$N_1(s$ $N_2(s$
ording to the	Step 1: Apply constraint $H_1(s) + H_2(s) = 1$.		$N_1(s$
Type-C	Step 2: Model the sensor noises with transfer functions $\hat{N}_1(s)$ and $\hat{N}_2(s)$.	••••••	$N_2(s$
	Φ_1 and Φ_2 are white noise processes that have unit intensity.	$\Phi_1 \longrightarrow \begin{bmatrix} \\ \Phi_2 & \\ \end{bmatrix}$	$\hat{N}_1(s)$ $\hat{N}_2(s)$
	Step 3: Add weighting functions $W_1(s)$ and $W_2(s)$. Define the generalized plant $P(s)$ as Eqn. (3).	Φ_1	$\hat{N}_1(s)$
h m t	$W_1(s)$ and $W_2(s)$ are the inverse of the frequency dependent specification of the sensor noises [2].	Φ_2	$\hat{N}_2(s)$
Type-C	Finally: \mathcal{H}_{∞} synthesis gives optimal $H_1(s)$, and get $H_2(s)$ from $1 - H_1(s)$.	Figure configure	3: F uratio entat
t_{∞} Problem	The generalized plant is given by		
	$\mathbf{P}(s) = egin{bmatrix} 0 \ \hline \hat{N}_1(s)W_1 \end{pmatrix}$	' ₁ (s) -	$\hat{N}_2(s)$ - $\hat{N}_2(s)$
	The closed-loop plant is given by $\mathbf{C}(\mathbf{x}) = \int U(\mathbf{x}) \hat{W}(\mathbf{x}) \mathbf{x}$		
	If we set $W_1(s) = 1/\hat{N}_2(s)$ and $W_2(s) = 1/s$ specification of $N_1(s)$ is set to $N_2(s)$ when $ $ versa.		
Represenation. $z = \mathbf{G}(s) w$	Minimizing $\ \mathbf{G}(s)\ _{\infty}$ gives optimathe maximum difference between the bound of the sensor noise in logari	l com he su: thmic	plen per sca
$_{21}(s).$ (1)	This is equivalent to minimizing the $J = \sup(\log N_{ ext{super}}(j\omega) - 1)$	ie cos - log r	st fui nin(
(2)	\blacktriangleright \mathcal{H}_{∞} solvers are readily available in python-control	pack	ages
angular	 Complementary filters can be synt 	hesize	ed us

From a simple complementary filter on to generalized plant cion.

$$\begin{bmatrix} s \\ W_2(s) & 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} .$$
 (3)

$$(s)\hat{N}_2(s)W_2(s)$$
]. (4)

- $N_1(s)$, then the target
- $|N_1(s)| \gg |N_2(s)|$, and vice

mentary filters that minimizes sensor noise and the lower ile.

inction

$$(|N_1(j\omega)|, |N_2(j\omega)|)).$$
 (5)

s such as MATLAB and

ising the kontrol python package, which is developed for KAGRA's control systems [3].

The super sensor noise is eq frequencies (logarithmically).

Discussion and Future work.

- the same method.

References

- detector. Class. Quant. Grav., 38(6):065011, 2021.
- 2019.
- [4] Terrence T.L. Tsang. SRM IP Longitudinal complementary filters synthesis using H-infinity method. https://klog.icrr.u-tokyo.ac.jp/osl/?r=17351
- Tokyo U., 2016.
- degli Studi di Siena, 2018.

$$|H_1(s)|^2 |\hat{N}_1(s)|^2 + |H_2(s)|^2 |\hat{N}_2(s)|^2 \Big]^{\frac{1}{2}}$$
. (6)
qually close to the lower bound at all

Preliminary implementation results can be found in Ref. [4].

▶ Unlike static filter designs, such us those in Refs. [5, 6, 7], the proposed method can generate filters that is optimal for any arbitrary sensor noises. Sensor correction and feedback-control filters can both be formulated into a complementary filter configuration. They can both be solved using

[1] T. Akutsu et al. Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave

[2] Thomas Dehaeze, Verma Mohit, and Christophe Collette. Complementary filters shaping using \mathcal{H}_{∞} synthesis. pages 459–464, 11

[3] Terrence T.L. Tsang. Kontrol python documentation. https://kontrol.readthedocs.io/en/latest/.

[5] T. Sekiguchi. Study of Low Frequency Vibration Isolation System for Large Scale Gravitational Wave Detectors. PhD thesis,

[6] Joris Vincent van Heijningen. Turn up the bass! Low-frequency performance improvement of seismic attenuation systems and vibration sensors for next generation gravitational wave detectors. PhD thesis, Vrije U., Amsterdam, 2018. [7] Lucia Trozzo. Low Frequency Optimization and Performance of Advanced Virgo Seismic Isolation System. PhD thesis, Università