16th Marcel Grossmann Meeting @ Online JGW-G2113011 LIGO-G2101357

Searching for ultralight vector dark matter with the cryogenic gravitational wave telescope KAGRA

Yuta Michimura for the KAGRA Collaboration

Department of Physics, University of Tokyo

michimura@phys.s.u-tokyo.ac.jp

Fujita Tomohiro, Jun'ya Kume, Soichiro Morisaki, Hiromasa Nakatsuka, Atsushi Nishizawa, Ippei Obata

Dark Matter Searches

- Previous searches focused mainly on WIMPs
- Need for new ideas to search for huge variety of other candidates

Ultralight DM with Interferometry

- Bosonic ultralight fields (<~1 eV) are well motivated by cosmology
- Behaves as classical wave fields $f = 242 \text{ Hz} \left(\frac{m_{\rm DM}}{10^{-12} \text{ eV}}\right)$
- Laser interferometers are sensitive to tiny length changes from such oscillations

Our Target: Gauge Boson

 Possible new physics beyond the standard model: New gauge symmetry and gauge boson

Proton

Neutron

Electron

Nucleus

gauge

field

- New gauge boson can be dark matter
- B-L (baryon minus lepton number)
 - Conserved in the standard model
 - Can be gauged without additional ingredients
 - Equals to the number of neutrons
 - Roughly 0.5 per neutron mass, but slightly different between materials Fused silica: 0.501 Sapphire: 0.510
- Gauge boson DM gives oscillating force

Oscillating Force from Gauge Field

Acceleration of mirrors

- by measuring the oscillating mirror displacement
- Almost no signal for symmetric cavity if cavity length is short (phase difference is 10⁻⁵ rad @ 100 Hz for km cavity)
- How about using interferometric GW detectors? A. Pierce+, Phys. Rev. Lett. **121**, 061102 (2018)

Previous Search with LIGO/Virgo

 Gauge boson dark matter search with LIGO O1 data and LIGO/Virgo O3 data have been done H-K Guo+, Communications Physics 2, 155 (2019)

LIGO, Virgo, KAGRA Collaboration, <u>arXiv:2105.13085</u>

- Better constraint than equivalence principle tests So far searches focus on $U(1)_B$ baryon number coupling
- Why repeat the search with KAGRA?

Search with GW Detectors

- GW Detectors are sensitive to differential arm length (DARM) change
- Most of the signal is cancelled out (LIGO/Virgo case)

Search with KAGRA KAGRA

- KAGRA uses cryogenic sapphire mirrors for arm cavities, and fused silica mirrors for others
- KAGRA can do better than LIGO/Virgo which uses fused silica for all the mirrors_r

Search with KAGRA KAGRA

KAGRA Gauge Boson Sensitivity

- Auxiliary length channels have better design sensitivity than DARM (GW channel) at low mass range
- Sensitivity better than equivalence principle tests frequency (Hz) YM, T. Fujita, S. Morisaki, 10¹ 10³ H. Nakatsuka, I. Obata, 10^{-20} PRD 102, 102001 (2020) 10^{-21} S. Morisaki, T. Fujita, YM, H. Nakatsuka, I. Obata, \mathcal{E}_B PRD 103, L051702 (2021) 10^{-22} coupling Eöt-Wash 10^{-23} torsion pendulum DARM 10^{-24} (GW channel) 10^{-25} MICROSCOPE mission MICH aths 10^{-26} 10^{-12} 10^{-11} 10 gauge boson mass m_A (eV)

KAGRA's Observing Run in 2020

- KAGRA performed joint observing run in April 2020 with GEO600 (O3GK)
- Displacement sensitivity still not good
 ~ 6 orders of magnitude to go at 10 Hz
- We have developed a data analysis pipeline to search for gauge boson DM

Data Analysis Pipeline

- Nearly monochromatic signal $\omega_i = m_A \left(1 + \frac{v_i^2}{2} \right)$
- Stack the spectra in this frequency region to calculate SNR $\rho = \sum_{n \to \infty} \frac{4 |\tilde{d}(f_k)|^2}{T_{\rm obs} S_n(f_k)} \text{Data}$

$$m_A \le 2\pi f_k \le m_A (1+\kappa \iota)$$

- Detection threshold Obs. time determined assuming ρ follows χ^2 distribution (=assuming Gaussian noise)
- From ho , 95% upper limit on coupling constant calculated

PSD

Applied the pipeline to mock data for verification

12

Stochastic Nature of DM Signal

- DM signal is from superposition of many waves with various momentum, phase and polarization
- The amplitude fluctuates at the time scale of

 $\tau = 2\pi/(m_A v_{\rm DM}^2)$

- At low frequencies, DM signal could be too small by chance and elude detection
- Method to calculate upper limit taking into account this stochasticity developed

H. Nakatsuka+, in preparation

Testing Method on O3GK Data

- Applying the pipeline for two sets of 10⁴ sec data
- Veto using
 - sharpness of the peak ($\Delta f/f \sim 10^{-6}$ for DM)
 - consistency between segments
- Some candidates found (mostly in noise contaminated region)
- Working on further veto by
 - shape of the peaks
 - line noise investigations
 - consistency between channels etc.
- Obtained proof-of-principle results from O3GK data
 - internal review to be done

Summary and Outlook

- KAGRA can do unique gauge boson dark matter search since the interferometer consist of sapphire and fused silica mirrors
- Data analysis pipeline developed
- Applied the pipeline to real KAGRA data in 2020 and got proof of principle results
- Further veto studies in progress
- Observing run in 2022 planned with better sensitivity (O4)
- Stay tuned!

Additional Slides

With Space and 3G Detectors

S. Morisaki, T. Fujita, YM, H. Nakatsuka, I. Obata, PRD 103, L051702 (2021)

Freq-Mass-Coherence Time

Frequency	Mass	Coherent Time	Coherent Length
0.1 Hz	4.1e-16 eV	0.32 year	3e12 m
1 Hz	4.1e-15 eV	1e6 sec 12 days	3e11 m
10 Hz	4.1e-14 eV	1.2 days	3e10 m
100 Hz	4.1e-13 eV	2.8 hours	3e9 m
1000 Hz	4.1e-12 eV	17 minutes	3e8 m
10000 Hz	4.1e-11 eV	1.7 minutes	3e7 m