JGW-G2112616, LIGO-G2100394 LVK Meeting March 2021 (Online) March 17, 2021

Status of KAGRA: Instrument Updates for O4

Yuta Michimura

Department of Physics, University of Tokyo michimura@phys.s.u-tokyo.ac.jp

on behalf of the KAGRA Collaboration

Status of KAGRA

- O3GK observing run on April 7-21, 2020 with GEO
- Detector sensitivity was ~0.7 Mpc (~1 Mpc at best) We originally planned to reach 8-25 Mpc for O3
- Detector configuration was power-recycled FPMI We originally planned to operate with dual recycling
- Focus of this talk: What are we preparing for 04?

O3GK Noise Budget

Plot by NB paper writing team

O3GK Noise Budget

Plot by NB paper writing team

O4 Target: 25 Mpc at least

Excess noise has to be reduced by ~1/50 at the bucket

- Thermal noise
- Laser noises (frequency noise and intensity noise)
- Shot noise
- Acoustic noise
- Coupling from auxiliary degrees of freedom
- Test mass suspension damping noise

- Thermal noise
- Laser noises (frequency noise and intensity noise)
- Shot noise
- Acoustic noise
- Coupling from auxiliary degrees of freedom
- Test mass suspension damping noise

Thermal Noise vs Temperature

• In O3GK, ~250 K due to test mass frosting

Defrosting

- Heaters are attached to the intermediate mass stages and viewports for defrosting
- Test with ITMY completed with promising results
- Aiming for ~20 K for O4

- Thermal noise
- Laser noises (frequency noise and intensity noise)
- Shot noise
- Acoustic noise
- Coupling from auxiliary degrees of freedom
- Test mass suspension damping noise

Laser Noises: Coupling

- Coupling was larger than expected by 1-2 orders of magnitude (probably due to birefringence)
- New ITMs are not available by O4
- Better interferometer alignment would reduce the coupling (with WFS) YM, K. Somiya, K. Yamamoto, JGW-T2011662 Intensity noise coupling Frequency noise coupling $\widehat{\mathbb{Z}}_{10^{-10}}$ 10⁻¹³ coupling (1/Hz only 55 W @ PRM, ITMX 0.398%, ITMY 0.402%, SRM 30% (somiya) tickle 10 W @ PRM, ITMX 0.44%, ITMY 0.4445%, SRM 30% Optickle 10 W @ PRM, ITMX 0.44%, ITMY 0.479%, SRM 30% R+TWE maps (somiya) 10^{-14} otickle 10 W @ PRM, ITMX 0.44%, ITMY 0.4445%, SRM 30% Measured (klog #13028) Optickle 10 W @ PRM, ITMX 0.44%, ITMY 0.479%, SRM 30% Measured (klog #13442) 10⁻¹⁵ Measured (klog #13028) 10^{-16} Optickle Measured (10% ITM asymmet (klog #13442) requency noise intensity noise 10^{-15} 10^{-16} 10^{-16} 10^{-17} 10^{-18} 10⁻¹⁷ 10-15 (1%) ITM asymmetry) (1% ITM asymmetry) FINESSE (HR+TWE maps) 10⁻¹⁸ 10⁻¹⁹ (HR maps only) 10^{-20} 10^{3}_{12} 10^{2} 10³ 10² 10¹ 10^{1} frequency (Hz) frequency (Hz)

Laser Frequency Noise

- Almost shot noise limited (~10 mW at PD) at 100 Hz
- Not very critical for BNS range

Laser Intensity Noise

- A factor of ~3 to shot noise limit
- Some noise from beam jitter ?
- Planning to increase power and to reduce beam jitter for O4 (Y. Kuromiya, <u>JGW-G2012322</u>)

- Thermal noise
- Laser noises (frequency noise and intensity noise)
- Shot noise
- Acoustic noise
- Coupling from auxiliary degrees of freedom
- Test mass suspension damping noise

Shot Noise

- In O3GK it was not good due to tilted SRM (T=30%)
- When DRFPMI, at least 30 W at BS is necessary
- When PRFPMI, at least 300 W as BS is necessary
- DR seems to be almost necessary for O4
 For this, suspensions needs to be settled down
 (M. Nakano, JGW-G2012213)
 YM, K. Somiya, K. Yamamoto,

- Thermal noise
- Laser noises (frequency noise and intensity noise)
- Shot noise
- Acoustic noise
- Coupling from auxiliary degrees of freedom
- Test mass suspension damping noise

Acoustic Noise

- Most contribution is somehow from bellows between IMC and IFI chambers (Input Mode Cleaner) (Input Faraday Isolator)
- Could be reduced by scattered light mitigation Install baffles and beam damps for O4
- Uncertain at this point

anti-symmetric por

Mid-size baffles to be installed around PRC and SRC T. Akutsu, JGW-G2011959

- Thermal noise
- Laser noises (frequency noise and intensity noise)
- Shot noise
- Acoustic noise
- Coupling from auxiliary degrees of freedom
- Test mass suspension damping noise

Coupling from Auxiliary DOFs

- Coupling MICH (Michelson) and PRCL (power recycling cavity length)
- Feedforward reduces the coupling by ~1/10 at max Aiming for ~1/100 for O4

input mode cleaner

laser

power recycling

cavity

pick-off port

anti-symmetric

PRM

MMTs

reflection port

transmission-Y port

Y-arm cavity

ITMX X-arm cavity ETMX

3 km

20

port

ETMY

SR2 signal

> recycling cavity

> > SRM

OMMTs

output

mode

cleaner

 Also, better diagonalization of sensing matrix can be done for O4

- Thermal noise
- Laser noises (frequency noise and intensity noise)
- Shot noise
- Acoustic noise
- Coupling from auxiliary degrees of freedom
- Test mass suspension damping noise

Test Mass Suspension Damping

- Noises from marionette damping using photo sensors are limiting
- Plan to install optical levers also for marionette and platform stages

Actuator Noise

- High power coil drivers for lock acquisition was used during the O3GK
- Coil driver switch to switch between high power and low power will be installed for O4
 1/100 actuator poiso
 - ~ 1/100 actuator noise Nominal Case

O4 "Optimistic" Example

• 1/400 excess, 40 K, 300 W at BS, DR, 1/10 laser noise

Summary 1/2

- We plan at least 25 Mpc for O4 (~70 Mpc even if very optimistic)
- Thermal noise
 O3GK: ~250 K due to test mass frosting
 O4 target: At least below 100 K
 Method: Attach heaters to defrost the test masses
- Laser noises (frequency noise and intensity noise)
 O3GK: Larger than expected by 1-2 orders of magnitude (probably due to ITM birefringence)
 O4 Target: At least 1/3 necessary
 Method: Better alignment with WFS, ⁽⁻⁾
 Improvements in laser intensity stabilization ⁽⁻⁾

Shot noise

O3GK: 3-5 W input at PRM, T=30% SRM tilted, PRFPMI **O4 Target**: At least 50W at BS, T=30% SRM, **DRFPMI Method**: Better suspension controls (_______26)

Summary 2/2

Acoustic noise

O3GK: Somehow mostly from IMC-IFI bellows O4 target: Reduction by ~1/50 necessary Method: Baffles and beam dumps for scattered light ())

 Coupling from auxiliary degrees of freedom O3GK: Larger than expected O4 target: At least reduction by ~1/50 necessary Method: Better diagonalization, x~10 more feedforward gain

Test mass suspension damping noise
 O3GK: No WFS, controls with local sensors
 O4 target: At least reduction by ~1/10³ at 50 Hz necessary
 Method: Coil driver switch,
 Additional optical levers,
 Noise modeling and planning on going

Bonus Slides

Observing Scenario of LVK

 Best sensitivity was ~1 Mpc although we anticipated 8-25 Mpc
 Belayed (start later than June 2022)

O4 Target

• We need to reduce excess noise at ~100 Hz at least by a factor of ~50

25-130 Mpc

frequency (Hz) **300 K suspension thermal**

O4 "Minimum" Example

• 1/40 excess, 100 K, 50 W at BS, DR, 1/3 laser noise

Various Thermal Noise

• All temperatures

Various Quantum Noise (DR)

• All powers

Various Quantum Noise (PR)

• All powers

Frosting of the Test Mass

 Finesse drop observed when one of the test mass temperature is below ~30 K

klog <u>#10033</u>

date in IST

Laser Noise Projections

Close to CARM shot noise limit from Optickle

Guessing Laser Noise in O4

- Pessimistic case: same as current level
- Optimistic case: RIN of 1e-8 /rtHz x Optickle coupling and CARM shot noise limited x measured coupling

