KAGRA-OzGrav Meeting

November 17, 2020

Future Plans for KAGRA Facility

Yuta Michimura

Department of Physics, University of Tokyo

for the KAGRA Collaboration

Observing Scenario

- Achieving the designed sensitivity is already tough
- But the plan is to upgrade KAGRA for O5

Upgrading KAGRA is Tricky

- Only cryogenic interferometer among 2G
- Not trivial to do both
 - high power (400 kW on mirror)
 - low temperature (20 K)
- Sapphire fibers to extract heat

thinner and longer

for suspension thermal noise reduction

Dilemma

thicker and shorter for heat extraction

Y. Michimura+, PRD 97, 122003 (2018)

heat

extraction

2G Sensitivity Comparison

• Not good at low freq. because of thick and short fiber (35 cm, φ1.6 mm) to extract heat, and lower mass

2G Sensitivity Comparison

• Not good at low freq. because of thick and short fiber (35 cm, φ1.6 mm) to extract heat, and lower mass

Upgrade Plan for KAGRA?

• Twofold broadband sensitivity improvement possible with multiple upgrade technology

Technologies for the Upgrade

- Broadband improvement is favorable so that we don't miss any science
- Combination of multiple technologies necessary to do broadband improvement
 - Larger sapphire test mass and its suspension
 - Higher power laser
 - Frequency dependent squeezing
- Upgrade should be done in steps
- What to implement first depends on scientific scenarios and technical feasibility

Options for Near Term Upgrade

 Different technologies improve sensitivity in different bands
Neutron stars

Possible Near Term Upgrade Plans

 Based on technical feasibility, facility and budget constraints (~5 years, ~\$5M)

Detection Ranges

Hard to beat A+ with horizon distance

(Selected) Science Comparison

 Sensitivity improvement in different bands give different science cases

	LF	40kg	FDSQZ	HF	K++
IMBH event rate					
NS event rate					
NS tidal deformability					
Hubble constant by BBH					
Hubble constant by BNS					
GW polarization test					
Stellar-mass BH spectroscopy					
IMBH spectroscopy					

Better Worse

+100%+50% +15% -15% -50% -100%

* Compared with bKAGRA, assumed A+ and AdV+ Network

* Summarized by A. Nishizawa et al. arXiv:2008.02921

Effective Progression of Upgrades?

- Low frequency is uncertain since many low frequency excess noises exist
- 40 kg mirror would be feasible but even larger mirror is required for longer term
- Higher power laser and frequency dependent squeezing are attractive in terms of feasibility
- HF plan has better sensitivity than A+ and AdV+ at high frequencies
- Higher power laser → Squeezing → Frequency dependent squeezing → Larger mirror might be an effective progression

Still Many Other Challenges

- Many other challenges still remain to be overcame to achieve design sensitivity
 - Detuning of signal recycling cavity
 - Homodyne detection
 - Larger thermal resistance
 - Mechanical loss of sapphire blades 3.6e-5 measured, while 7e-7 required
 - No sapphire mirror spares 2 out of 12 met absorption requirement
 - measured ~30 ppm/cm
 - requirement for ITM was 50 ppm/cm
 - Inhomogeneity of sapphire ITM refractive index
 - ITM birefringence

T. Yamada JGW-G1910180

Discussion History

- March 2017: Semi-officially started the discussion
- May 2017: Upgrade plans first presented outside of KAGRA at GWADW2017 at Hamilton Island (JGW-G1706485)
- December 2018: Future Planning Committee formulated (Chair: Sadakazu Haino)
- June 2019: Birefringence observed
- August 2019: First version of the white paper summarized (<u>JGW-M1909590</u>)
- 2020: Discussions to establish Future Strategy Committee to further organize the activities for upgrade implementation

KAGRA+ HF and NEMO

 What KAGRA can do with ~5years, ~\$5M, within current 3 km facility (NEMO: 4 km, ~\$100M)

Summary

- KAGRA requires different approach for the upgrade due to its cryogenic operation
- Twofold sensitivity improvement (300 Mpc) is feasible by combining multiple technologies
- What to implement first depends on scientific scenarios and technical feasibility
- KAGRA HF upgrade seems to be most attractive for the first step
- But there are still many practical challenges
- Other options is to do HF upgrade with extreme RSE and long SRC scheme (next Kentaro's talk)