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Generalization

General system for any DoF.
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Problem statement

Disturbance, external, cannot be reduced, but can be induced.

Displacement that we
want to minimize
(Goal)

Noise, can be reduced, but
exist limitations.

Plant, mechanical, fixed

Control filter, can be whatever we want (almost)
— Into optimal control
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Fundamental Limitation in Control System

Minimizable, K— Minimizable, K—0

Not simultaneously minimizable
Coupling terms are complementary 1 4= JF

+

KP
1+ KP

1
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Optimization

Simple observation: It is a positive definite function.

— It must be minimizable by some optimal controller K,
given some disturbance D and noise N.

—— Optimization

(K



Optimization Interlude

| mean mathematical optimization.

— Minimization of a cost function by choosing the critical parameters within an allowed set.

For example,

Cost function:

Allowed set:
In a compact way

*

= arg min (J(x))

Minimization:

zER
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Optimal Control

— Find optimal controller that minimizes a cost function.
Some cost functions to be minimized:
E.g.,

oo
The integrated RMS/expected RMS: Wil / <X 2> df 2-norm of the system
0

The maximum of the displacement spectrum: J:x: = Imax <X2> «-norm of the system

We can choose controllers however we like.
But, the system has to be stable.
l.e. The controllers/system must be within some mathematical set.
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H2/H~ Optimal Controller

Letter “H” comes from the mathematical space the optimization takes place, namely, Hardy space.

Hardy space contains all possible stable systems.

In a nutshell, H2/H~ optimal controllers are:

H2 optimal controller:

H- optimal controller: .. = argmin (max <X2>>
KeS

S : {All possible controllers such that the system is stable}
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Why He?

Joo = max <X2>

Only minimizes the
dominating peaks,
e.g. resonances.

Some weighting filter/function
according to requirements

L =A% (<X2> |VVX\2)

— Trade-off between seismic noise
suppression and control noise attenuation.

—— Maximizing hardware potential to
suppress seismic noise while meeting noise
requirement.
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Some Benefits of Optimization-based Approaches

Form of cost function is not limited, we can even add actuation signal as part of
the cost function so it doesn’t saturate.

E.g.

(X2) |Wx|* + (F?) |[Wg|?

Displacement spectrum Actuation signal spectrum

— Trade-off between suppression and actuation signal
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Things to Do
Generating H2 and H~ optimal filters are extremely easy, only if

1. We have precisely modelled the plant,
2. We have precisely modelled the disturbance, and

3. We have precisely modelled the noise.

But, those were never done in a systematic manner.
Of course, | can do those stages by stage, suspension by suspension.

But, wouldn’t it be nice if we can have a data analysis pipeline that automates the
workflow? — Part VI of my presentation.
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Fundamental Limitations

Having optimal controllers is only minimizing the disturbance and noise coupling to
the displacement.

True limitations are the disturbances and noises.

Therefore, before doing optimal control, it is necessary to reduce the disturbance
and noise level as much as possible.

Remains to be another discussion

— Part lll, IV, V of my presentation.
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Recap

General model for a DoF

Cost function and optimization

*

r* = argmin (J(x)) =
z€R

Displacement PSD,
The quantity that we want to minimize

H2 and H- optimal controller

Ky, = a.rgmin/‘ <X2> df
KeS 0

0

K — arc mi X2
H oo dr}% él:ls’lll (maX < >>

S : {All possible controllers such that the system is stable}
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Testing and
Evaluating Optimal

Controllers
Simulated equivalent disturbance
1. Wait when actual disturbance is E.g. simulated seismic noise Oplev as an out-of-loop sensor.
small. (May need sensor correction)

2. Pick a disturbance model, e.g. 90th
percentile seismic noise.
3. Synthesize controller accordingly.
4. Inject the modeled disturbance to the : X c
. . P
system, which mimics the actual
disturbance.
5.  Measure

With/without control and with previous
controller.
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Disturbance and Noise Limitation

Limitations
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Progress

Part lll: Sensor Correction Filter Optimization, and Inter-calibration Minimization.
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Problem with LVDT

Senses relative displacement
— Coupled with ground motion.

—— Cannot actively suppress seismic
noise without injecting it back to the
system.

LVDT noise

NovpT 4

—»O—»

Xg

Seismic noise
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Sensor Correction

Niypr 4

—»O—»

Seismic noise

LVDT path removed

N = NL\/’DT + Nseismo T (Xg - Xg)
Seismometer path

Seismometer noise Sensor correction filter, =1 for now 28



Inter-calibration Mismatch

Unknown calibration mismatch,
fixed by LVDT calibration factor

Nseismo

Sensor correction gain.

N = NLVDT = Nseismo St (5Xg o an)

AS



Measuring Alpha (A suboptimal way)

LVDT readout: XIP + NLVDT - an

B ~ o T |Pg| Unwanted bias
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Find Sensor Correction Gain using Optimization

If we can measure N

J(B) = (N?) = (B— )’ (X2) + ...

B* = argmin J(8) = a
BER
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Measuring Sensor Noise

1 KPP

- D N
1+KP~  1+KP

feedback Kggo

Can be measured by geophones!
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Inter-calibration minimization

Geophone
readout
Sensor correction High gain feedback system
NrvpT
—+ \ N X Xgeophone
40, " O—O—O0— D >
X I 7
g >€|_>_; Ngeophone
SC‘Smol s __ LMS Algorithm |«

Update sensor correction gain

mean-square error = (3 — a)’ <Xg2> + ...




Simulation Condition

Controller K= 1/P * (lowpass) * 1000

In time domain, simulate inverted
pendulum displacement with typical
noises.

At each time step, we update the
sensor correction gain using LMS
algorithm
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Credits: Lam Yee Ching (Jason)
Undergraduate at my university (CUHK)
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Simulation Result

LVDT calibration,
Alpha

Sensor Corr. gain

Sensor Correction against time

N

Sensor correction gain,
Beta

4000 6000
Time(s)

Credits: Lam Yee Ching (Jason)
Undergraduate at my university (CUHK)
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Discussion and limitations

e | don’t know if this works with the real suspension

(@)

O O O O

Is actuation going to saturate? What would happen?
Only works when seismic noise dominates other noises.
Many things to tweak, e.g update rate of LMS algorithm.

Original sensor correction filter with 3x peak noise amplification didn’t work.

Need to shape very good highpass for geophone.
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Recap

LVDT

Seismometer

Inter-calibration mismatch

J(B) = (N?) = (8- a)* (X}

B* = argmin J(B) = «
BER

Sensor correction gain
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Recap 2

NLVDT

Sensor Corr. gain
° ° o
1 -~ a &

o
1=}

Sensor correction scheme

NSCISIIIOT

Sensor Correction against time

High-gain feedback using
LVDT+correction

AT_;@_y-_; NgeophoneT
s __ LMS Algorithm

geophone
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Progress

Part lll: Sensor Correction Filter Optimization,

Part IV: Optimal Complementary Filters
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Sensor Correction Filter
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Sensor Correction Filter In KAGRA

1.

Particular order
of attenuation

(2)

Transfer function

Magnifude
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2. Allowable noise
amplification

10"
Frequency (Hz)

10"
Frequency (Hz)

3.

Above certain frequency

a.
o}

Close to 1
Zero phase
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Sensor Correction Filter (LIGO)

3rd-order

Magnitude

phase rad

Less than 3

- Sensor correction filter at LIGO

;

Near unity and zero
phase

- Sensor correction filter at LIGO

107
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Complementary Filters
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Complementary Filter

F; = argmin / (N?) df
F14F2=1
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Complementary Filter Optimization (old)

B s" 4+ a17s% + a921s° + a335s*
(s + ay)

¢
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Complementary Filter Optimization (old)

2 sT 4+ a17s% + a921s° + a335s?
2 E—

(s +a4)"

e Predefined filter
e We don't really know if this can best blend the sensors.

— Limiting the performance. Could have been better.

—— Second approach: H2 and H- Synthesis (Again!)
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Interlude: Formalism of Robust control

If we can model the system such
that G=N, then H2 synthesis
automatically designs the
complementary filter for us.

H2 minimizes ||G||2

< = P11+P12K(I—P22K)_1P21]w

H- minimizes || ||
G o0

z = Guw
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Converting to H2 problem




Results

~ |P T LVDT noise
IP T LVDT noise fit
IP T geophone noise
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Results
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Results

—— Noise N1
Noise N2
——— Blended noise N
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Results
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Generalization

Ny
aNz2+(1—a)

No .
b1+ (1—




Sensor Correction

Fig. 4. Architecture used for Hoo synthesis of complementary filters

Credits: Thomas Dehaeze
https://orbi.uliege.be/bitstream
12268/241299/1/paper.pdf

Magnitude

Magnitude

Fig. 9.
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—— Sensor correction filter at LIGO

-~ Sensor correction filter at LIGO
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Q&A
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Amplitude
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from kontrol.model import noise2zpk
weight = np.exp(-f)

noise lvdtt noise2zg i a, max order=6é, wei
noise geot_: ise ¢ , max order=é, weigh

C

Iterations: 18

Functi evaluations:
Optimization terminated succes

Current func

Iterations: 10

Function evaluations:

.figure (figsize=(10,5))
loglog (f, noise lvdtt_data,
loglog (£, (noise_lvdtt_fi

1 noise geot_data, lal

ot ctockicr chier ok erich

pl
pl
pl
pl
pl
pl
pl
pl
pl

IPTLVDT

IP T LVDT noise fit
IP T geophone

IP T geo noise fit

Amplitude Spectral Density um/v Hz

Frequency (Hz)




Sensor Correction filter?
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Progress

Part VI: File Management System/Data Pipeline for Suspension Models, both
Simulation and regressed.
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