JGW-T2011755

June 30, 2020

Estimated sensitivity for auxiliary degrees of freedom of KAGRA interferometer

Yuta Michimura, Kenatro Komori, Kentaro Somiya, Ryutaro Takahashi, Eiichi Hirose, Yutaro Enomoto, Fabian Erasmo Pena Arellano, Ayaka Shoda

Scope

- Estimate the displacement sensitivity for CARM, MICH, PRCL, SRCL
 - useful for the noise budget of auxiliary DoFs
- Based on the latest estimated sensitivity code (<u>JGW-</u> <u>T1707038</u>)
- Seismic noise
 - fitted function from suspension model
- Suspension thermal noise
 - analytical calculation
- Mirror thermal noise
 - analytical calculation (we have to guess coating thickness)
- Quantum noise

- analytical calculation for DARM, fitting of Optickle result for auxiliary DoFs

http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/LCGT/subgroup/ifo/MIF/OptParam

Seismic noise

Models

Medium Noise Model from JGW-T1402971

Seismic Noise Spectra

• Let's just use <u>JGW-T1402971</u> MNM for simplicity

Comparison Between Models

• Fitting function by Somiya based on Takahashi model

New Seismic Function

Suspension thermal noise

Type-A Payload Configuration

Type-B Payload Configuration

Type-Bp Payload Configuration

Material Properties of Wires

- Sapphire (see JGW-T1707038)
 - density: 4.0e3 kg/m^3
 - Young's modulus: 4.0e11 Pa
 - loss angle: 2e-7
- Piano wire (Nilaco 711267)
 - density: 7.83e3 kg/m^3 (W. R. Bennett Jr., Science of Musical Sound: Volume 1)
 - Young's modulus: 2e11 Pa (W. R. Bennett Jr., Science of Musical Sound: Volume 1)
 - loss angle: 2e-4 (<u>RSI 86, 084501 (2015)</u>)
- Tungsten wire (Nilaco 461406)
 - density: 19.3 kg/m^3 (matweb)
 - Young's modulus: 4.0e11 Pa (matweb)
 - loss angle: 1.7e-4 (PLA 255, 230 (1999))
- Maraging steel rod (Daido MAS-1)
 - density: 8.02 kg/m^3 (see right)
 - Young's modulus: 1.82e11 Pa (see right)
 - loss angle: 2e-4 (N. A. Robertson 2001)

Maraging steel spec sheet from R. Takahashi

								30
8 रग	エージ	ング鋼 MA	AS-1 (mas-	1 は大同特殊調 【名)			
概	要 MA よっ 算り りま	S-1 は低炭素 って 1960N/mm ² 炭部品、精密パ です。	18%Ni 鋼に時が 以上の強度を ネ、ダイヤフラ・	効硬化元素と 得られると共1 ムその他の相	して Co、Mo、1 こ籾性も持ち合 めて高度の信	「i、AI 等を加え わせた代表的 頼性を要求さ	た材料で、時 ゆ超強力鋼で れる部品等に	効硬化処理 「時計部品、 「使用されてお
■特	長 (1) (2) (3) (4) (5)	比較的簡単な日 冷間加工を施す ります。 この高強度の」 熱処理が急冷 比較的良い溶 冷間加工による	時効硬化処理の トと更に上昇し、 と、籾性もあり、 等の必要もなく 接性や切削性す 5硬化がわずか	Dみによって 例えば 50% 高い切欠強馬 簡単で、熱処 E有しておりま いです。(50%)	1960N/mm ² 以 王延材の時効 建や疲労強度 理による登も根 す。 王延で HV40 育	は上の引張強さ 硬化後の引張 を有しておりま 極小です。 前後の増加程の	が得られます 強さは 2110N す。 変)	F。この強度(/mm ⁸ 以上に:
化学成为	} 	Ma	D-9	Ni	Co	Mo	Ti	%
≤0.03	≦0.10	≦0.10	≦0.010	18.00~ 19.00	8.50~ 9.50	4.70~ 5.20	0.50~ 0.70	0.05~ 0.15
物理的性質	t							
■物理的性質 密度	t	比熱	電気抵	抗	ヤング率	熱膨張係	数熱	伝導率
■物理的性質 密度 8.02	t Ag/m³	比熱 J/(kg·K) 335	電気抵 60~70	抗 2 • cm 1	ヤング率 N/mm ² 82,000	熱膨張係 (20~480) 10.1×10	数 熱 C) /K 19	伝導率 W/(m·K) .7 (25°C)

Mirror thermal noise

Mirror and Coating Parameters

Coating: silica/tantala (loss angle: 3e-4 / 5e-4)

	ITM/ETM	BS	SRM/2/3	PRM/2/3		
Material	Sapphire	Fused silica	Fused silica	Fused silica		
Diameter	22 cm	37 cm	25 cm	25 cm		
Thickness	15 cm	8 cm	10 cm	10 cm		
Mass	22.8 kg	18.9 kg	10.8 kg	10.8 kg		
Temperature	22 K	290 K	290 K	290 K		
Substrate loss angle	1e-8	1/(6.5e-12/thickness+7.6e-12*f^0.77) Physics Letters A 352, 3 (2006)				
Coating layers	22 / 40	tantala/silica/tantala (see p.10 of JGW-T1503347)	4 / 18 / 18	4 / 18 / 18		
Beam radius	3.5 cm	3.62 cm	0.43 / 0.43 / 3.67 cm	0.46 / 0.46 / 3.66 cm		

Number of coating layers for fused silica mirrors are derived from calculation using reflectivity. Coating thermal noise of Type-B/Bp suspensions are not very important since quantum noises for auxiliary DOFs are quite high. BS thermal noise is tricky (<u>LIGO-T0900209</u>) but not considered carefully here.

JGW-T1707038

Classical and Quantum Gravity 34, 225001 (2017)

http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/LCGT/subgroup/ifo/MIF/OptParam

Quantum noise

Optickle Simulation (BRSE Aso)

Optickle Simulation (DRSE Aso)

Optickle Simulation (BRSE Enomoto)

Quantum Function

Displacement sensitivity

Codes for plotting these sensitivity curves lives in the zip file of JGW-T2011755

Displacement Noise: ITM

Displacement Noise: ETM

Displacement Noise: BS

Displacement Noise: SRM

Displacement Noise: SR2

Displacement Noise: SR3

Displacement Noise: PRM

Displacement Noise: PR2

Displacement Noise: PR3

Mirrors Summary

Displacement Sensitivity: DARM

Displacement Sensitivity: CARM

NOTE: frequency noise and intensity noise not considered

Displacement Sensitivity: MICH

Displacement Sensitivity: PRCL

Displacement Sensitivity: SRCL

Displacement Sensitivity Summary

Mar 26, 2020 Sensitivity

