JGW-T2011755

June 13, 2020

Estimated sensitivity for auxiliary degrees of freedom of KAGRA interferometer

Yuta Michimura, Kenatro Komori, Kentaro Somiya, Ryutaro Takahashi, Eiichi Hirose, Yutaro Enomoto, Fabian Pena Arellano

Scope

- Estimate the displacement sensitivity for CARM, MICH, PRCL, SRCL
 - useful for the noise budget of auxiliary DoFs
- Based on the latest estimated sensitivity code (<u>JGW-</u> <u>T1707038</u>)
- Seismic noise
 - fitted function from suspension model
- Suspension thermal noise
 - analytical calculation
- Mirror thermal noise
 - analytical calculation (we have to guess coating thickness)
- Quantum noise

- analytical calculation for DARM, fitting of Optickle result for auxiliary DoFs

http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/LCGT/subgroup/ifo/MIF/OptParam

Seismic noise

Seismic Noise Spectra

• Let's just use <u>JGW-T1402971</u> MNM for simplicity

Comparison Between Models

Fitting function by Somiya based on Takahashi model

New Seismic Function

Suspension thermal noise

Type-A Payload Configuration

Type-B/Bp Payload Configuration

Mirror thermal noise

Mirror and Coating Parameters

Coating: silica/tantala (loss angle: 3e-4 / 5e-4)

	ITM/ETM	BS	SRM/2/3	PRM/2/3
Material	Sapphire	Fused silica	Fused silica	Fused silica
Diameter	22 cm	37 cm	25 cm	25 cm
Thickness	15 cm	8 cm	10 cm	10 cm
Mass	22.8 kg	18.9 kg	10.8 kg	10.8 kg
Temperature	22 K	290 K	290 K	290 K
Substrate loss angle	1e-8	1/(6.5e-12/thickness+7.6e-12*f^0.77) Physics Letters A 352, 3 (2006)		
Coating layers	22 / 40	4	4 / 18 / 18	4 / 18 / 18
Beam radius	3.5 cm	3.62 cm	0.43 / 0.43 / 3.67 cm	0.46 / 0.46 / 3.66 cm

Number of coating layers for fused silica mirrors are derived from calculation using reflectivity. Coating thermal noise of Type-B/Bp suspensions are not very important since quantum noises for auxiliary DOFs are quite high.

BS thermal noise is tricky (LIGO-T0900209) but not considered carefully here.

JGW-T1707038

Classical and Quantum Gravity 34, 225001 (2017)

http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/LCGT/subgroup/ifo/MIF/OptParam

Quantum noise

Optickle Simulation (BRSE Aso)

Optickle Simulation (DRSE Aso)

 DARM from AS_DC, CARM from REFL_2I, MICH from 1Q, PRCL from POP_2I, SRCL from POP_1I displacement (/ Hz 10⁻¹⁷ 10⁻¹⁸ 10⁻¹⁹ 10⁻²⁰ CARM originally in rad/rtHz. Corrected to m/rtHz DARM MICH PRCL SRCL DRSE design 10^{4} 10^{1} 10^{2} 10^{3} 10⁵ frequency (Hz)

JGW-T1200913

Optickle Simulation (BRSE Enomoto)

Quantum Function

Displacement sensitivity

Displacement Noise: ITM

Displacement Noise: ETM

Displacement Noise: BS

Displacement Noise: SRM

Displacement Noise: PRM

Displacement Sensitivity: DARM

26

Displacement Sensitivity: CARM

Displacement Sensitivity: MICH

Displacement Sensitivity: PRCL

29

Displacement Sensitivity: SRCL

30

Displacement Sensitivity Summary

