Optical loss of a molecular layer

Satoshi Tanioka

Abstract

- ✓ Molecular layer can be formed on the cryogenic mirror surface.
- ✓ Estimation of optical loss induced by a molecular layer on the cryogenic test mass.
- ✓ Scattering can be negligible.
- ✓ Absorption may become a problem.

Molecular layer

http://klog.icrr.u-tokyo.ac.jp/osl/?r=9377

June 9, 2020

Molecular layer formation

Formation rate

Measured in KAGRA

Forming Rate $\eta = 27$ nm/day It can be reduced by a factor of 50 by improving the vacuum system of KAGRA.

Optical loss

✓ Optical losses are induced by the molecular layer.

Assumption

- ✓ Uniform molecular layer formation
- ✓ Amorphous ice
- ✓Lambert-Beer law -> absorption
- ✓ Literature value for the absorption coefficient of amorphous ice
 - https://ghosst.osug.fr/resources/PUBLI Schmitt 1998/schmitt98-ASSL-SSI-227-199.pdf
 - > thin film deposited

Absorption

 ξ : the correlation length which characterizes the periodic length of the roughness along the surface.

 σ : the standard deviation of thickness.

June 9, 2020

Desorption

Large absorption can give energy to the molecules.

-> molecules may desorb from the surface

This effect is now under consideration.

Summary

- ✓ The molecular layer transportation from the beam duct introduces the molecular layer on the cryogenic mirror surface.
- ✓ Absorption by the cryogenic molecular layer can become a problem.
- ✓ Further investigations are needed.
 - >absorption coefficient of molecular layer
 - whether the layer is formed or not for the case of LIGO Voyager

Backup

Backup

