JGW-T2011661 May 12, 2020

Actuator modification for cryopayload

Yuta Michimura

Department of Physics, University of Tokyo

Motivations

- Nominal actuator parameters were set to meet the noise requirement for final bKAGRA
 - Y. Michimura+, CQG 34, 225001 (2017)
- Higher power coil drivers for TM used in O3 (see <u>JGW-T1910142</u>)
- We want higher actuation also for O4

https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/kagranoisebudget/Suspensions

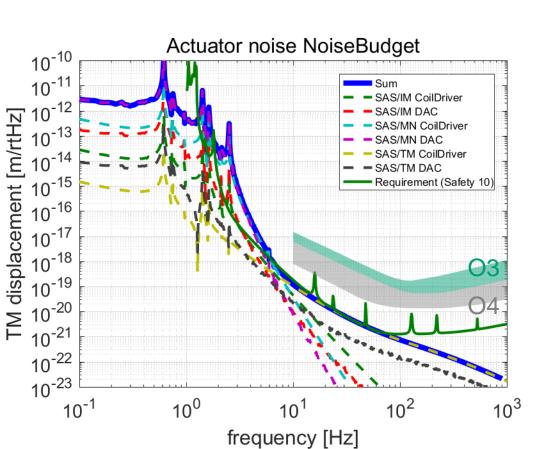
* See, also JGWwiki/KAGRA/Subgroups/VIS/ActuatorDesign

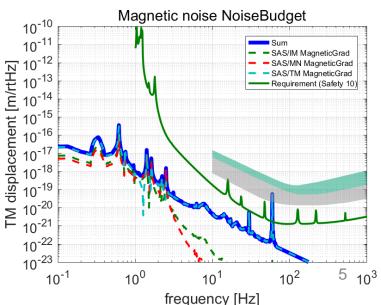
^{*} NB model used for the calculation lives in

Actuation Range and Noise

- Design for O3 summarized below
 - High power coil drivers were used for TM instead of the default low power coil drivers (x97.5 efficiency at DC)
- Note that the noise written below is for one of the ETMs.

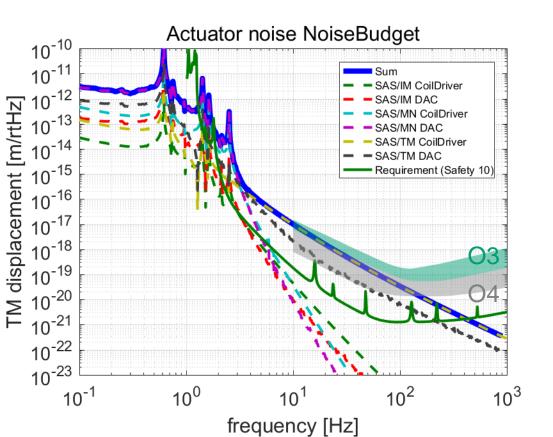
	Coil magnet [N/A]	Coil Driver	Max force [N]	Efficiency at DC [m/V]	Sum of noises at 10 Hz [m/rtHz]
Test Mass	0.0015 N/A	Low power (nominal)	7.7e-6	1.8e-9	1.0e-19
		High power (used in O3)	7.4e-4	1.7e-7	9.8e-18
Intermediat e mass	0.015 N/A	Modified low	1.5e-4	1.7e-8	4.4e-20
Marionette	0.45 N/A	Modified low	8.2e-3	3.9e-7	3.6e-20

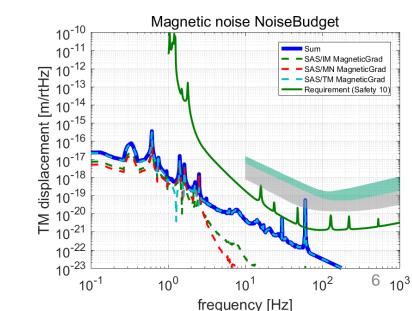

Actuation Range and Noise


- Design for O4 summarized below
 - x5 magnet for IM and MN
 - High power coil driver for MN? (x13 efficiency at DC)
- Note that the noise written below is for one of the ETMs

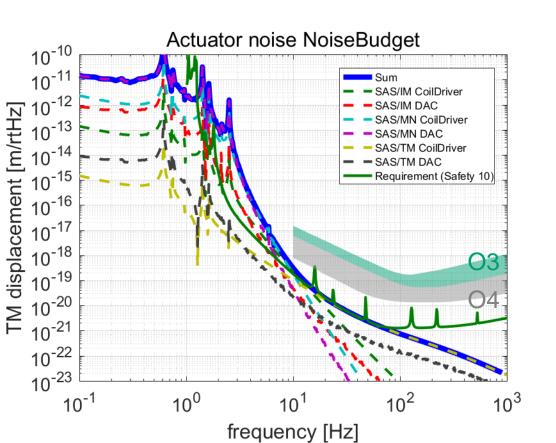
	Coil magnet [N/A]	Coil Driver	Max force [N]	Efficiency at DC [m/V]	Sum of noises at 10 Hz [m/rtHz]
Test Mass	0.0015 N/A	Low power (nominal)	7.7e-6	1.8e-9	1.0e-19
		High power (used in O3)	7.4e-4	1.7e-7	9.8e-18
Intermediat e mass	0.075 N/A	Modified low	7.5e-4	8.3e-8	2.2e-19
Marionette	2.1 N/A	Modified low	4.1e-2	2.0e-6	1.8e-19
		High power (in O4 ?)	5.3e-1	2.5e-5	8.9e-19

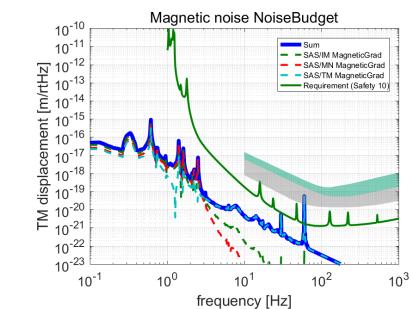
Actuator Noise (Nominal)


Both electronics noise and magnetic noise are OK

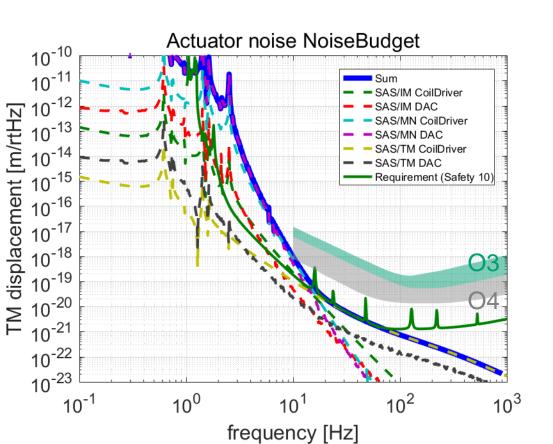


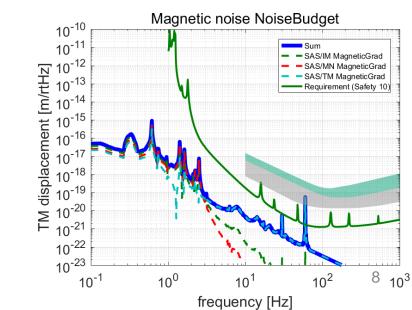
Actuator Noise (HP for TM)


- TM electronics noise kind of OK for O3, but not for O4
- Note that noises plotted below are for one ETM and there are no safety factor included for the shaded area (O3 and O4 target)



Actuator Noise (x5 IM/MN)


- Electronics noise and magnetic noise for IM and MN increase by x5
- OK for O4, but not for final requirement



Actuator Noise (x5 IM/MN HP for MN)

- Further electronics noise increase for MN
- OK for O4, but not for final requirement

