
Frequency Dependent Diagonalization Matrices of Payload Actuation

for Local Feedback Control

Tsang Terrence Tak Lun
The Chinese University of Hong Kong

April 17, 2020

The following is a proposal to modify the actuation output diagonalization scheme in hope to reduce actuation
cross-coupling from the local damping control. The implementation of this scheme may be trivial but this will help
eliminating one source of resonance mode ring up, which, in turn, makes debugging easier when a mode is suddenly
excited. Although the system is functional currently, the actuators are not really diagonalized, as in, there are
plenty of room for improvement.

I am sure that most people realize the importance of diagonalized systems. Here, I briefly explain the idea just
in case. The reason for a diagonalized system is simple. The techniques we have been using, Bode plots, Nyquist
criterions, etc, are optimized for a single degree of freedom (DoF). This means that, before doing anything related
to feedback control, we should configure our system so that our systems are as close to multiple Single-Input-Single-
Output (SISO) systems as possible so we can treat the each separated system one by one.

In the multiple SISO picture, if there is actuation coupling between different degrees of freedom, then the actua-
tion/feedback of one DoF will become external disturbance into another which could cause undesirable excitation.
Of course, we can patch the system with additional loops suppressing those unwanted excitation (such as the band-
pass comp filters). But, the additional loop will cause additional excitation because of coupling, making this process
very tedious and complicated. However, if we started off with systems that were already diagonalized, everything
will be much simpler as cross-DoF excitation will be minimal. And, my opinion is to build our control systems on
an already diagonalized system.

Ideally, a perfectly diagonalized system has one-to-one input output relationship. For example, if we start with a
general system with N degrees of freedom x1, x2... xN with actuation xact

1 , xact
2 ... xact

N , then diagonalization will
give N separated subsystems that only has one input and one output as shown in Fig. 1. Then we can individually
make control loops for each subsystems. In such a case, the diagonalization utilizes cancellation filters (feedforward
filters basically) to cancel the coupling effects. For example, in a 2 DoFs system shown in Fig. 2, the first system
output is a combination of the two inputs, i.e. x1 = P11x

act
1 + P12x

act
2 . If we add a cancellation filter such that

x1 = P11x
act
1 + P12x

act
2 − C12P11x

act
2 , then the system is diagonalized if we set C12 = P12/P11.

Without loss of generality, if we consider a system with N degrees of freedom, then the system output reads


x1

x2

x3

...
xN

 =



P11 P12 P13 . . . P1N

P21
. . .

P31
. . .

...
. . .

PN1 PNN




xact
1

xact
2

xact
3
...

xact
N

−



0 C12 C13 . . . C1N

C21
. . .

C31
. . .

...
. . .

CN1 0




P11x

act
1

P22x
act
2

P33x
act
3

...
PNNxact

N

 , (1)

where Pij are the physical plants/paths and Cij are the cancellation filters/diagonalization matrix. If we set the
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Figure 1: Fully diagonalized systems.

Figure 2: Cancellation filter for decoupling one degree of freedom from actuation of another degree of freedom

cancellation filters correctly, i.e. Cij = Pij/Pii, then the input output relationship is completely diagonal, i.e.


x1

x2

x3

...
xN

 =



P11 0 0 . . . 0

0
. . .

0
. . .

...
. . .

0 PNN




xact
1

xact
2

xact
3
...

xact
N .

 (2)

And, from here, we can treat each degree of freedom separately and construct feedback loops separately.

Coming back to our case, there are at least 2 levels of actuation “diagonalization” I have seen in KAGRA and but
none of those truly diagonalize the actuators. In all cases, we start with an output matrix “EUL2COIL” which
has the geometry information of the actuators. This matrix coarsely diagonalizes the actuators but is usually not
enough. The first level of such is the so-called “coil balancing”. This procedure equalizes the strength of the coils. In
the free-mass limit, this level of “diagonalization” would be enough. However, in reality, the masses are suspended
rather than free floating, and there are more mechanical complications involved. For example, equal longitudinal
offsets acting on a pendulum will tilt the pendulum as well. So, balancing the coils are actually not directly related
to any sort of diagonalization in reality. The second level of diagonalization was used at the inverted pendulum
stages to diagonalize the longitudinal, transverse and yaw actuation degrees of freedom, given a reliable sensor
readout. Each of the coils were used to push the inverted pendulum at a particular frequency and the responses is
observed. From the coupling ratios measured, a correction matrix can be applied directly to the EUL2COIL matrix
to diagonalize the actuators. This is almost equivalent to the aforementioned cancellation filter matrix, except it
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only diagonalize the actuators at one frequency because the matrix has scalar entries. This approach works for the
inverted pendulum because actuation couplings are assumed to have no frequency dependency. However, at the
payload, the dynamics of the pendulums dictate that the actuations are intrinsically coupled and have frequency
dependency. Therefore, the only way to diagonalize the actuators at the payload is via cancellation filter matrix.

Here, we can choose to keep the EUL2COIL matrix and the coil output filters, but the EUL2COIL matrix is not
necessary because it can be absorbed into the diagonalization filter matrix. Because the actuation coupling goes
both intra-stage (e.g. TM-L to TM-P) and inter-stage (e.g. IM-L to TM-P), in general, the diagonalization matrix
should span all stages (at least all stages of the payload). So, for the payload, the real-time model should ideally
look like Fig. 3. Actuation signals go through a gigantic diagonalization filter matrix and the diagonalization matrix

Figure 3: Diagonalization filter spanning all payload stages.

redistribute the signals to the coils. Notice that this diagonalization matrix only affects local control. Ideally, The
diagonalization matrix should kill all actuation coupling, so this also means killing the possibility of hierarchical
control. Therefore, the ISC path along with the DRIVEALIGN matrix should bypass the diagonalization filter so
hierarchical control is possible. Of course, we can also configure the diagonalization matrix such that actuation from
higher stage to lower stage is not decoupled. In this case, the ISC path can go before the diagonalization filters.
If we choose to not decouple inter-stage coupling, then we can have three separate diagonalization filter matrix
for each stage as well. It is very hard to decide an actual configuration right now because it depends on the final
implementation and the person who is going to deal with this IFO-to-suspension interface. But, the configuration
in Fig. 3 should be general enough to cover all cases. The diagonalization matrix should be in the form of

Diagonalization matrix =


1 C12 . . . C1N

C21 1
...

. . .

CN1 1

 , (3)

where Cij are the aforementioned cancellation filters.

The difference between DRIVEALIGN and the diagoanlization matrix should be clear although they might share
similar filters. The purpose of the diagonalization matrix is to separate the degrees of freedom and turn the
suspension system, which is a MIMO, into a multiple SISO where we can construct damping loops separately for
each degree of freedom. On the other hand, the purpose of the DRIVEALIGN matrix is to decouple the test mass’s
degrees of freedom (the inteferometer to be exact), and in this case, the actuation can come from all three stages.
To illustrate their difference, let’s consider the length to pitch coupling from MN to TM. In the case of the local
diagonalization matrix, the cancellation of such coupling is via TM pitch actuation. So, if there is MN length to
TM pitch coupling, the diagonalization matrix will be configured such that the coupling will be cancelled by TM
pitch actuation. In contrast, the DRIVEALIGN matrix will be configured such that the coupling will be cancelled
by MN pitch actuation via the MN pitch to TM pitch path.

3


