JGW-G2011541

Discussion on Interferometer Configuration for O4

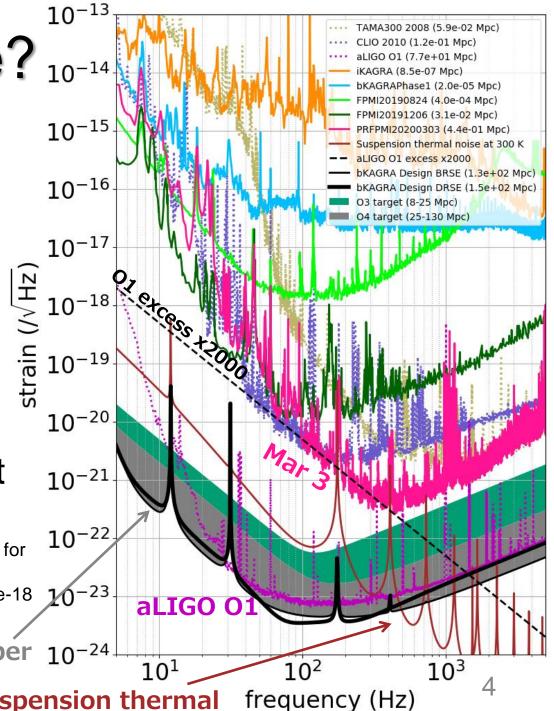
Yuta Michimura

Executive Summary

• Hmm

List of Considerations

- Cryogenic temperature necessary?
 - Depends on sensitivity necessary
- Which SRM reflectivity?
 - 0 % or 70 % or 85 %
 - Depends on feasibility of DR locking
- Polarizers in PRC and SRC necessary?
 - Depends on birefringence effect to sidebands
 - See JGW-T1910396 for proposal
- ITM recoating necessary?

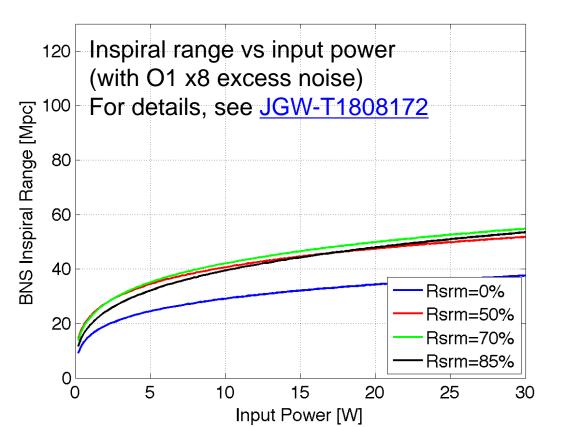

- Depends on the effect of transmission asymmetry to CMRR of frequency/intensity noise

Where Are We? 10-14

- 400-500 kpc
- PRFPMI with 70% SRM tilted, 3-5 W to PRM, ~240 K, DC readout
- O1 excess x2000 !
- Pretty close to shot noise (<u>klog #13144</u>)?

(klog #12772 gives 6e-18 m/rtHz @ 1 kHz for 1.4 W input, 3.4 mW at OMC PDA. 4.5 W input, 8 mW at OMC PDA should give ~2e-18 m/rtHz for current setup.)

O4 target on Obs. Scenario Papér 10^{-24} 25-130 Mpc by ~2021 300 K suspension thermal


Current Status and O4 Target

Cryogenic necessary for sure

	Mirror temp.	Power at BS	SRM reflectivity	Detuning angle	Homodyne angle	Excess noise
NOW	~240 K	30-50 W	70% tilted	~90 deg (PRFPMI)	~90 deg (conventional)	O1 x 2000
O3 low	22 K	10 W	0 %	90 deg (PRFPMI)	90 deg (conventional)	O1 x 20
O3-15Mpc	22 K	10 W	70 %	90 deg	90 deg	O1 x12
O3 high / O4 low	22 K	33 W	70 %	90 deg (BRSE)	90 deg (conventional)	O1 x 8
O4 80Mpc	22 K	404 W	85 %	90 deg	90 deg	O1 x 2
O4 high	22 K	673 W	85 %	90 deg (BRSE)	90 deg (conventional)	no excess
Design	22 K	673 W	85 %	86.5 deg	135.1 deg	no excess

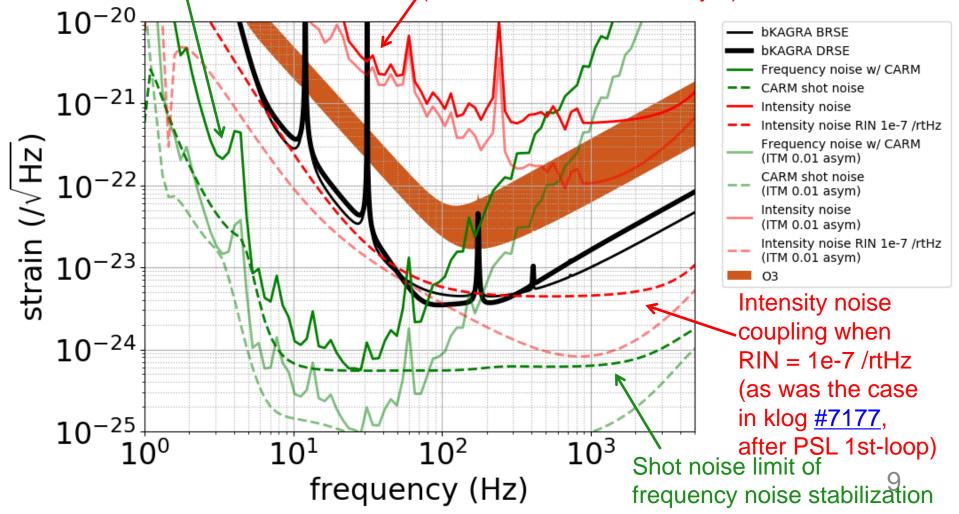
DR Necessary?

- DR is better and almost necessray (especially better when low frequency excess noise is too much)
- Still, 70% SRM seems good for O4 (we don't have much confidence on higher power)

Feasibility of Locking DR

- According to Nakano-kun
 - DRMI on 1f is fine. Lasts 30 min or so
 - DRMI on 3f lasts 5 min or so klog #12535
- Needs more time (~ a week?) to assess if DRFPMI is feasible or not with current ITMs
- If not feasible, our choice for O4 will be
 - Go with PRFPMI, install 0% SRM
 - Evaluate if polarizers in PRC and SRC will help locking DRFPMI

Effect of T_ITM asymmetry


- See <u>JGW-T1910352</u>
- Considering frequency noise and intensity noise coupling, achieving the designed sensitivity is not feasible, but achieving O4 target (25-130 Mpc) should be possible with current ITM transmission asymmetry (if inhomogeneity effect is not considered)
- Re-coating is not necessary for O4
- Need to evaluate the effect of inhomogeneity with current setup

Frequency noise coupling estimated with current measured frequency noise; CARM loop turned on (could be limited by measurement noise at high frequencies)

Copied from JGW-T1910352

Intensity noise coupling estimated with current measured intensity noise (stabilization servo not on yet)

Dim lines represent same curves when ITM transmission asymmetry was 0.01

Conclusions So Far

- Cryogenic temperature necessary?
 - Necessary to achieve O4 target (25-130 Mpc)
- Which SRM reflectivity?
 - DR is better but we have to assess if DR locking is feasible or not
 - If DR is feasible, 70% SRM is good
- Polarizers in PRC and SRC necessary?
 We need to assess if DR locking is feasible without polarizers
- ITM recoating necessary?

- Recoating is not necessary but we should estimate the effect of inhomogeneity

List of Measurements to be Done

- Feasibility of locking DRFPMI (~ 1 week)
- Shot noise calculation (~ 0.5 day)
- Power recycling gain for sidebands (~ 0.5 day)
- LSC and ASC sensing matrix (~ 2 days)
- MICH/PRCL/SRCL to DARM coupling (~ 1 day)
- Frequency and intensity noise coupling (~ 1 day)
- MICH contrast defect with MICH locked and FPMI locked (~ 1 day)
- Mode content of AS (OMC cavity scan) (~ 0.5 day)
- Scattered light investigations (~ 1 week)
- Compare measurements with Optickle/FINESSE simulations