Fast localization of coalescing binaries with gravitational wave detectors and

Low frequency vibration isolation for KAGRA

Yoshinori Fujii U. of Tokyo, NAOJ

<u>Abstract</u>

 Expected fast localization performance with current network by one template search with hierarchical approach using heterogeneous HLV-, HLK- and HLVK-network

 * got impact of adding new detectors to the network
 * got required sensitivity of the less sensitive detector.

Local control system for KAGRA Type-A suspension

 aiming more robust interferometer operation
 * confirmed the control system satisfied the requirements
 for acquiring interferometer lock.

Thesis contents

1. Introduction

2. Benefit of adding detectors to the observation network

- Low frequency vibration isolation
 KAGRA seismic Attenuation system
- 5. Suspension control design
- 6. Performance test of local control for KAGRA Type-A suspension
- 7. Summary
 - \rightarrow Fast localization simulation with current network
 - → TypeA suspension controls toward lock acquisition

* First BNS detection & EM-follow up

→ Era of Multi-messenger astronomy

For effective EM-follow up observation

→ Fast source localization

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

For more precise localization

→ detector network is necessary

The network helps:

- * better localization
- * better sky coverage
- * to extract GW polarization
- * higher network duty cycle

Thesis contents

1. Introduction

2. Benefit of adding detectors to the observation network

- Low frequency vibration isolation
 KAGRA seismic Attenuation system
- 5. Suspension control design
- 6. Performance test of local control for KAGRA Type-A suspension
- 7. Summary

In heterogeneous network:

Ex.) SNR > SNRth \rightarrow detection

→ Triple (or more)
 coincidences
 → Hardly happens

→ Not good for EM-follow up

(At the beginning)

Demanded for EM-follow up:

As an example:

* For kilonova search with BlackGEM

→ 2.7 deg² / 5 min (for 23rd Magnitude)

[ref] <u>https://link.springer.com/chapter/10.1007/978-3-319-10488-1_5</u>

```
To complete < 9 hrs (one night)

\rightarrow < 300 deg<sup>2</sup>
```

For 1600 deg², it will take \sim 50 hrs.

https://astro.ru.nl/blackgem/

[ref] https://gracedb.ligo.org/superevents/public/O3/

In heterogeneous network:

Ex.) SNR > SNRth \rightarrow detection

- \rightarrow * Set a lower threshold,
 - * as long as not too many background triggers.

(At the beginning)

Hierarchical approach

Hierarchical approach in fast localization

<u>With LIGO-Virgo / LIGO-KAGRA / LIGO-Virgo-KAGRA network:</u>

→ Expected performance?

→ Required detector sensitivity?

→ Optimal SNR threshold?

Calculation set up:

- 2. Two LIGOs (54 Mpc), Virgo, KAGRA (< 54 Mpc) Higher sensitivity × 2 & Lower sensitivity (× 2)

More correctly:

Injections (number of events: 248)

* Reuse of other calculation [ref]:

How artificial V/K triggers generated:

Noise event:

Random number from **background trigger** dsit. Time_LIGO + Random number from **uniform** dist. Random number from **uniform** dist.

Injection event:

How coincident triggers generated?

- * Using SNR threshold & False-Alarm-Probability (FAP)
 - \rightarrow Even though (SNR > SNRth), not everything is injection.
 - In LIGO-Virgo network case (With Pv = random [0 : 1]):
 - (SNRv > SNRth) and ($p_v > FAP$) \rightarrow HLVinjection
 - (SNRv < SNRth) and ($p_v > FAP$) \rightarrow HL

$$(p_V < FAP) \rightarrow HLV$$
noise

(SNR threshold for H, L = 5., 5.)

(SNR threshold for H, L = 5., 5.)

= ~3.5

becomes worse due to noise triggers.

34 / 74

Performance (HLV): (SNR threshold for H, L, V = 5, 5, 3.5)

Required: Virgo sensitivity > 20% of LIGO

Performance (HLK): (SNR threshold for H, L, K = 5, 5, 3.5)

Required: KAGRA sensitivity > 28% of LIGO
Hierarchical approach by 4-detector network

Assuming that:

1. Relative sensitivity H:L:V = 1:1:0.5

2. SNR threshold H:L:V = 5:5:3.5

Performance (HLV): (SNR threshold for H, L, V = 5, 5, 3.5)

Performance (HLVK): (SNR threshold for H, L, V, K = 5, 5, 3.5, 3.5)

Required: KAGRA sensitivity > 28% of LIGO

Summary of the hierarchical approach

* Required detector sensitivity at SNR threshold 3.5:

Relative sensitivity

- **HLV-network:** Virgo sensitivity > 0.2 * LIGO
- **HLK-network:** KAGRA sensitivity > 0.28 * LIGO
- **HLVK-network:** KAGRA sensitivity > 0.28 * LIGO
- → This hierarchical approach will improve the fast localization in the heterogeneous network.

As more practical aspect, higher network duty cycle \rightarrow key for EM follow up

\rightarrow <u>Robust operation of fourth detector</u>

Cannot operate interferometer

Demanded for stable operation

Thesis contents

- 1. Introduction
- 2. Benefit of adding detectors to the observation network
- 3. Low frequency vibration isolation
 4. KAGRA seismic Attenuation system
 - 5. Suspension control design
 - 6. Performance test of local control for KAGRA Type-A suspension
 - 7. Summary

→ Type-A suspension controls toward lock acquisition

GW detector & suspension

Michelson-based interferometer Fabry-Perot cavities 3 or 4 km-arm

4) Suspended core optics

3 m

irror

dummy

Why pendulum?

\rightarrow To treat seismic noise

Seismic noise attenuation \rightarrow pendulum

Resonant damping / Mirror Alignment: necessary

- * DAMP resonances.
- * Don't care the controls noise.

* Freeze the mirrors (* Keep low noise)

- 1. Introduction
- 2. Benefit of adding detectors to the observation network
- 3. Low frequency vibration isolation
- 4. KAGRA seismic Attenuation system
 - 5. Suspension control design
 - 6. Performance test of local control for KAGRA Type-A suspension
 - 7. Summary

→ TypeA suspension controls toward lock acquisition

KAGRA detector

3 km

Underground Cryogenic operation

PhD thesis defense on January 21th 2020, Yoshinori Fujii

3 km

Then what's Type-A?

\rightarrow The longest suspension in KAGRA

- Upper 5 stages: room-temperature

- Lower 4 stages: cryogenic-temperature

Components of Type-A suspension

Details of cryogenic payload

And, the cryogenic part

- Thesis contents
 - 1. Introduction
 - 2. Benefit of adding detectors to the observation network
 - 3. Low frequency vibration isolation
 - 4. KAGRA seismic Attenuation system
- 5. Suspension control design
 6. Performance test of local control for KAGRA Type-A suspension
 - 7. Summary

→ TypeA suspension controls toward lock acquisition

Targets of low frequency vibration isolation for KAGRA

- 1. To construct local control system toward interferometer lock
 - \rightarrow Resonance damping
 - \rightarrow Mirror residual suppression
- 2. To confirm that the system satisfies the requirements

Overview of performance tests:

1. Mechanical system characterization

2. Resonance damping

3. Mirror residual suppression

Axis definition:

1. Mechanical system characterization:

- Target: Confirm the system has characteristics of pendulum
- Measurement: Frequency responses from actuators to sensors

\rightarrow For preparation of test 2 & test 3.

\rightarrow compared to 3D-rigod-body simulation

1. Mechanical system characterization:

- Target: Confirm the system has characteristics of pendulum
- Measurement: Frequency responses from actuators to sensors

1. Mechanical system characterization: For higher * By checking vibration isolation (from actuator) frequency Actuation 10 10° 10^{-1} 10^{0} 10^{-2} 10⁻³ 10-1 10 nagnitude agnitud Actuation 10^{-5} 10⁻² 10^{-6} 10^{-7} 10⁻³ 10^{-8} Model Model 10^{-4} 10^{-9} Measurement 10⁻¹⁰ Measurement 10⁻¹¹ 10 10^{-1} 10^{0} 10° 10^{-1} 10^{-1} 10 Frequency [Hz] Frequency [Hz]

→ Type-A suspension has characteristics of pendulum up to 4.2 Hz.
 → discrepancy at 1.1 Hz to 1.5 Hz is worth to investigate for the further step.

• Target: Confirm the control system damps all the resonances which disturbs the lock acquisition, within 1/e decay time of 1 min.

Number of resonances:

Assuming rigid-bodies \rightarrow 75 modes

From sensor & actuator availability Measured:

 \rightarrow For 53 modes

- Target: Confirm the control system damps all the resonances which disturbs the lock acquisition, within 1min.
- Measurement: 1/e decay time constant of each resonant mode

* Excite the mode one by one,

by sending a sinusoidal signal to implemented actuators.

→ The control system damped all the resonances which disturbs the lock acquisition for the lock-recovery mode.

3. Mirror residual suppression:

- Target: Suppress the mirror residual velocity & displacement
- Measurement: Frequency response from ground to mirror

3. Mirror residual suppression:

* Frequency response from ground to mirror

3. Mirror residual suppression (w/ 90%tile seismic motion)

→ The control system locally suppresses the residual and satisfies the requirement in the time scale of 1 min.

3. Mirror residual suppression (w/ 90%tile seismic motion)

- * Measurement agrees with simulation. \rightarrow works as designed.
- * Performance at < 15 mHz:
 → due to noise coupling from seismometers.
 - \rightarrow For further stabilization,
 - 1. local seismometer corr. system (with tilt-meter), or
 - 2. global control with interferometer signal

is necessary.

→ Local control system toward lock acquisition has constructed. PhD thesis defense on January 21th 2020, Yoshinori Fujii 72 / 74
Summary of performance test of local control system:

1. Mechanical system characterization

→ Type-A suspension has characteristics of pendulum up to 4.2Hz. → the unexpected frequency response (→ further investigation).

2. Resonance damping

→ The installed damping control system damped all the resonances which disturbs the lock acquisition for the lock-recovery mode.

3. Mirror residual suppression

→ The control system locally suppresses the residuals enough and satisfies the requirement in the time scale of 1 min.

→ KAGRA Type-A full suspension is firstly controlled.

Summary of this work:

1. Fast localization simulation with current network

 \rightarrow demonstrated that:

Search with hierarchical approach will be most useful when adding new, less sensitive detectors to the network, as they are undergoing commissioning.

2. TypeA suspension controls toward lock acquisition

- \rightarrow Constructed local control system for KAGRA Type-A suspension.
- → Confirmed that the implemented system satisfies requirements for acquiring interferometer lock.

→ This contributes to KAGRA joining to the network as the 4th detector.

Backups

Note: fast localization

Kilonova: Electromagnetic emission powered by radioactive decays of r-process nuclei, given by ejected material from neutron star mergers. [ref] https://iopscience.iop.org/article/10.3847/1538-4357/aaa0cb/pdf

78 / 74

Detector response:

The signal(I)

Signal sensed by detector is a combination of two polarizations

 $\mathbf{h}(\mathbf{t}) = \mathbf{F}_{+}(\theta, \phi, \psi) \ h_{+}(t) + F_{\times}(\theta, \phi, \psi) \ h_{\times}(t)$

 F_+ and F_{\times} : detector response functions depend on sky location (θ, ϕ) and polarization angle ψ

 $F_{+} = -\frac{1}{2}(1 + \cos^{2}\theta)\cos 2\phi\cos 2\psi - \cos\theta\sin 2\phi\sin 2\psi$ $F_{\times} = \frac{1}{2}(1 + \cos^{2}\theta)\cos 2\phi\sin 2\psi - \cos\theta\sin 2\phi\cos 2\psi$

 F_+ and F_{\times} can be approximated as constant over length of CBC signals in ground based detectors

Ref: <u>http://old.apctp.org/conferences/2011/NRG2011/NRGPDF/CBC_DA_Korean_School_2011.pdf</u>

Assumed noise curves:

• For V/K, the curves are scaled.

1 <u>https://www.ligo.org/scientists/first2years/</u>

ise on January 21th 2020, Yoshinori Fujii

83 / 74

How the inputs obtained?:

In 2015 scenario in [1]

* Found events (630)

* Used events (248)

Reference: the inputs:

* Configuration (number of events)

In 2015 scenario in [1]

Randomly selected in order to save computational cost.

* All injections (48905) \longrightarrow * Found events (630) $\xrightarrow{}$ * Used in simulation (250)

1 <u>https://www.ligo.org/scientists/first2years/</u>

ise on January 21th 2020, Yoshinori Fujii

Effective distances of the injections:

PhD thesis defense on January 21th 2020, Yoshinori Fujii

Generating & mixing artificial V triggers

Generating & mixing artificial V triggers

$$SNR = metadata + Gauss(0,1)$$

$$Time = metadata + Gauss(0,0.66 \text{ ms}*\frac{6}{\text{SNR}})$$

$$Phase = metadata + Gauss(0,0.25 \text{ rad})$$

計算の流れ(まとめ)

Performance (HLV):

(SNR threshold for H, L = 5.)

Performance of HL- vs. HLV-hierarchical-network:

RnageH : RangeL = 54 : 54 (Mpc) H1th : L1th : V1th = 5 : 5 : 3.5

Performance (HLK):

(SNR threshold for H, L = 5.)

 \rightarrow becomes improved

92 / 74

Performance of HL- vs. HLK-hierarchical-network:

RnageH : RangeL = 54 : 54 (Mpc) H1th : L1th : K1th = 5 : 5 : 3.5

Performance (HL vs. HLV): (SNR threshold for H, L, V = 5, 5, 3.5)

Performance (HLVK):

Relative sensitivity = (1, 1, >0.3), SNR threshold = (5, 5, ~3.5) → Effectively improved Performance of HL- vs. HLK-hierarchical-network: RnageH : RangeL : RangeV = 54 : 54 : 27 (Mpc) H1th : L1th : V1th : K1th = 5 : 5 : 3.5 : 3.5

Summary of the hierarchical approach

* Required detector sensitivity & optimal SNR threshold?

 Add plot
 Relative sensitivity
 SNR threshold

 • HLV-network:
 (1, 1, >0.2)
 (5, 5, ~3.5)

 • HLK-network:
 (1, 1, >0.28)
 (5, 5, ~3.5)

 • HLVK-network:
 (1, 1, 0.5, >0.3),
 (5, 5, 3.5, ~3.5)

→ This hierarchical approach will improve the fast localization in the heterogeneous network.

Performance of HLV-triggers:

• with artificial triggers

with actual triggers

Difference: from geometry

Difference: from geometry

Actual duty cycle:

Table 1 Percentage of time during the first and second observing runs that the aLIGO and AdV detectors spent in different operating modes as recorded by the on-duty operator. Since several factors may influence detector operation at any given time, there is a certain subjectivity to the assignments. Maintenance includes a planned 4-h weekly period ($\sim 2.4\%$ of the total), and unplanned corrective maintenance to deal with equipment or hardware failures. Coincident operation of the aLIGO detectors occurred $\sim 43\%$ of the time in O1 and $\sim 46\%$ in O2. After joining O2 on August 1 2017 AdV operated with a duty factor of approximately 85% until the end of the run on August 25 2017.

		01		02		
		Hanford	Livingston	Hanford	Livingston	Virgo
Operating mode %	Observing	64.6	57.4	65.3	61.8	85.1
	Locking	17.9	16.1	8.0	11.7	3.1
	Environmental	9.7	19.8	5.8	10.1	5.6
	Maintenance	4.4	4.9	5.4	6.0	3.1
	Commissioning	2.9	1.6	3.4	4.7	1.1
	Planned engineering	0.1	0.0	11.9	5.5	_
	Other	0.4	0.2	0.2	0.2	2.0

Actual performance of online detectors:

https://summary.ligo.org/~detchar/summary/O3a/

Interferometer locking:

Pound-Drever-hall (PDH) technique:

[ref] <u>https://gwdoc.icrr.u-tokyo.ac.jp/cgi-</u> <u>bin/private/DocDB/ShowDocument?docid=4739</u>

PhD thesis defense on January 21tl Within linewidth (FWHM).

74

Cavity linewidth:

$$\Delta L_{\text{lin}} = \frac{\lambda}{2\mathcal{F}} \cdot \left(\mathcal{F} = \frac{\pi\sqrt{r_1 r_2}}{1 - r_1 r_2}\right)$$

wb*del_L_lin = (2*pi*UGF)*lumbda/2/F								
DoFs	UGF [Hz]	Finessse	lambda [nm]	wb*del_L_lin [um/s]	del_L_lin [nm]			
ARM_IR		1550	1064		0.34			
ARM_GR	10e3	50	532	334	53.24			
MICH	50 for BS	1	1064	167	226			
PRCL	50 for PRM	57	1064	2.93	9.33			
SRCL	50 for SRM	38	1064	4.398	14			

Note: verification of suspension performance

PhD thesis defense on January 21th 2020, Yoshinori Fujii

106 / 74

1. Mechanical system characterization:

* By checking vibration isolation

 → Type-A suspension has characteristics of pendulum up to 4 Hz.
 → discrepancy at 1 Hz to 1.5 Hz is worth to investigate for further improvement.

Results: force transfer functions, from IPL

Results: force transfer functions, from BFL

Settings for the measurement w/o controls:

With Tower-damped state,

- ordinal L-loop (blue) was opened at IP satge.
- instead,
 - green curve loop was used for the ALS DARM measurement,
 - red curve loop was used for the FPMI_DARM measurement.

PhD thesis defense on January 21th 2020, Yoshing and the second s

Simulation models:

PhD thesis defense on January 21th 2020, Yoshinori Fujii

111 / 74

Results: displacement transfer functions, from IPL

Results: displacement transfer functions, from IPL

* Including IP(geo) signal.

Results: displacement transfer functions, from BFL

Results: displacement transfer functions, from IPL to BFL

Including IP(geo) signal.

Notes: Resonance damping

My work: Constructing controls toward interferometer lock

PhD thesis defense on January 21th 2020, Yoshinori Fujii

117 / 74

Control system for damping 2. Resonance damping: with disp. sensors FO IP Inertial sensor IP LVDT Actuator DC+Damp Payload **F2** 13.5 m LVDT GAS DC **F3** MN-PS / Act. Act. DC+Damp BF MN-Oplev DC **BF-LVDT** damping **BF-LVDT** IM-PS / Act. Payload Damp Act. DC+Damp BF-Act. TM-Oplev

2. Resonance damping:

Open loop transfer functions for Control system for damping with disp. sensors

Figure 6.13: Implemented servo filters in addition to the ones in Table 6.1.

Figure 6.12: Open loop transfer functions of the implemented servo filters for the calm-down phase.

So, is this unknown Yaw mode problematic for the target?

→ No for now, at leaset. for (current) lock-recovery.

> * When noise injected at **BF**-stage:
> → The mode looks exited.

* When noise injected at MN-stage:
→ Not (clearly) exited in TM-chain.

```
* The decay time ~3min.
```

120 / 74

Summary of this work:

- -- The installed damping control system damped all the resonances which disturbs the lock acquisition **for the lock-recovery mode**.
 - -- exception: one mode
 - -- This mode looks from HL-system
 - -- This would be problematic when upper stages are used for the global controls. \rightarrow Further improvement
 - In this work, the payload damping system is constructed mainly with the optical levers (relatively small linear range).
 better to utilize Photo-sensors more effectively.

unknown Yaw mode [2]?

PhD thesis defense on January 21th 2020, Yoshinori Fujii

122 / 74

Photo-sensor inter-calibration

* According to a simulation, the following force TFs should have same DC gain (since RM-chain is still enough compared to TM-chain it seemed). MN(Y)ps/MN(Y)exc and MN(Y)oplev/MN(Y)exc

PhD thesis defense on January 2

Photo-sensor inter-calibration

* Spectra w/ the calibration factor.
* Might be too large (a bit) though, direction looks okay.

Power spectrum Power spectru

* We have to keep in mind that the PS in ETMX becomes sometimes crazy though.

Optical lever noise floor:

* Obtained with interpolation:

(Estimated \rightarrow interpolated)

Optical lever noise floor:

* Obtained with correlation analysis (TMY_ASD – MNY_cross_ASD):

Notes: RMS suppression

```
制御ルーフ<sup>°</sup>at IP-stage:
```


PhD thesis defense on January 21th 2020, Yoshinori Fujii

128 / 74

Sensor correction filter の検討

Ground motion at KAGRA site

PhD thesis defense on January 21th 2020, Yoshinori Fujii

130 / 74

Suspension response at KAGRA site w/o control

Ref: <u>https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=10436</u>

Suspension response at KAGRA site w/o control

- * In good weather
 → req. will be satisfied.
- * In bad weather
 (especially in winter)
 → req. will not
 be satisfied
- * Contribution to RMS
 is large in the band.
 → To be suppressed
 → at upper stage.

Nact DC+Damp

Actuator /

鏡

PhD thesis defense on January 21th 2020, Yoshinori Fujii

134 / 74

Cut the seismic noise injection via LVDT → Sensor correction

Simulation: mirror velocity w/ 90%tile seismic motion

Simulation: mirror disp. w/ 90%tile seismic motion

Simulation: mirror motion w/ 90%tile seismic motion

* Required precision of the inter-calibration:

Improvement at IP- & TM-stage

By combining (TML/IPL)*(IPL/GNDL)

By combining (TML/IPL)*(IPL/GNDL)*(GNDL_model)

Disp. TF:

From GND to TML

Comparison: simulation vs. measurement

* Mirror displacement w/ 90% tile seismic motion

Comparison: simulation vs. measurement

* Mirror velocity w/ 90% tile seismic motion

3. Mirror residual suppression

- * Options for further stabilization:
 - * implement inertial damping system with sensitive inertial sensors.
 * For this, subtract tilt-signal from the inertial sensors with tilt-meter might be necessary.
 - * locally subtract tilt-signal from seismometer with tilt-meter.
 - * actuate the ETMs so that the their drifts follow that of ITMs with interferometer/cavity signal or strain-meter signal.

Sensor self-noise vs. mechanical response

* w/ 10%tile, 50%tile and 90%tile seismic motion:

PhD thesis defense on January 21th 2020, Yoshinori Fujii
テスト実装: 2つのサスペンションのIP-stageに実装、Xarm で見ると

テスト実装: 2つのサスペンションのIP-stageに実装、Xarm で見ると

PhD thesis defense on January 21th 2020, Yoshinori Fujii

147 / 74

テスト実装: 2つのサスペンションのIP-stageに実装、Xarm で見ると

^{148 / 74}

Designing active control system / Control phase

Suppress large disturbance

Reduce RMS velocity RMS angle (Root-Mean-Square)

Keep position with low noise control

メイン鏡用の防振装置

メイン鏡用の防振装置

INVERTED PENDULUM with 3 horizontal

- -- LVDT & actuator units
- -- inertial sensors

GEOMETRIC-ANTI SPRING with 1 vertical LVDT & actuator unit

rnu mesis delense on January Zim Zuzu, Yoshinori Fujii

メイン鏡用の防振装置

(イタリアのグループの協力のもと開発)

BOTTOM-FILTER DAMPER with 3 horizontal & 3 vertical LVDT & actuator units

Requirements, Type-A suspensions by YF

Table 5.2: Requirements on the Type-A suspension control. The column labeled as ref. describes the section which explains the reason of the requirements.

Items	Requirements	ref.	
The calm-down phase			
1/e decay time	< 1 min.	$\S 5.1.2$	
RMS displacement (transverse, vertical)	$< 0.1 \mathrm{mm}$	§ 5.1.6	
The lock acquisition phase			
RMS velocity (longitudinal)	$< 2.0 \ \mu m/sec.$	$\S 5.1.3$	
RMS angle (pitch, yaw)	< 880 nrad	$\S 5.1.4$	
RMS displacement (longitudinal)	$< 0.39 \ \mu { m m}$	$\S 5.1.5$	
RMS displacement (transverse, vertical)	< 0.1 mm	§ 5.1.6	
The observation phase			
Control noise at 10 Hz (longitudinal)	$< 8.0 \times 10^{-20} \text{ m//Hz}$	§ 4.2	
RMS displacement (longitudinal)	$< 0.39 \ \mu { m m}$	$\S 5.1.5$	
RMS displacement (transverse, vertical)	< 0.1 mm	§ 5.1.6	
RMS angle (pitch, yaw)	< 200 nrad	$\S 5.1.4$	
DC angle drift (pitch, yaw)	< 400 nrad	$\S 5.1.4$	

Requirements, Type-A suspensions by KO

Calm-down phase		
Item	Requirement	For/Determined by
$1/e \mod \det \det$	$< 1 \min$	Quick recovery
RMS displacement (L)	$<50~\mu{\rm m}$	Smooth transition to next phase
RMS displacement (T, V)	$< 0.1 \mathrm{~mm}$	Miscentering
RMS angle (P, Y)	$<50~\mu{\rm m}$	Smooth transition to next phase
Lock acquisition phase		
Item	Requirement	For/Determined by
RMS velocity (L)	$< 240 \ \mu m/s$	Auxiliary laser locking
RMS displacement (T, V)	$< 0.1 \mathrm{~mm}$	Miscentering
RMS angle (P, Y)	$<880\;\mathrm{nrad}$	Optical gain degradation $< 5\%$
Observation phase		
Item	Requirement	For/Determined by
Displacement noise (L) @ 10 Hz	$< 8 \times 10^{-20} \; {\rm m/Hz^{1/2}}$	Sensitivity
Displacement noise (V) @ 10 Hz	$< 8 \times 10^{-18} \; {\rm m/Hz^{1/2}}$	Sensitivity (1% coupling to L)
RMS displacement (T, V)	$< 0.1 \mathrm{~mm}$	Miscentering
RMS angle (P, Y)	< 200 nrad	Beam spot fluctuation $< 1 \ \rm mm$
DC drift (P, Y)	< 400 nrad/h	Sustainable lock for 1 day left

(P, Y) are set as $50 \,\mu\text{m}$ and $50 \,\mu\text{rad}$, respectively [28]. The RMS displacement for the other translational DoFs (T, V) are required for another reason which is mentioned shortly later.

[ref] K. Okutomi PhD

Mechanical installation has done! HOWEVER .. According to a simulation, assuming 1% coupling,

PhD thesis defense on January 21th 2020, Yoshinori Fujii

155 / 74

Type-A SAS,

'TyrpeA180429_20K'

Eigen mode: 75 modes

165 / 74