

重力波望遠鏡 KAGRA における レーザー強度安定化システムの開発

富山大理

黒宮 勇樹, KAGRA Collaboration

2019/12/07 2019年度日本物理学会北陸支部

1. イントロダクション

- KAGRA について
- 強度安定化について
- 2. 富山大学での強度安定化
- 3. KAGRAでの強度安定化
- 4. まとめ

KAGRA について

岐阜県飛騨市神岡町に建設

マイケルソン干渉計をベースとした レーザー干渉計型重力波望遠鏡

今年中に運転開始予定 →Observation 3 (2019年4月から 約1年間の観測) に参加

LIGO, Vergo と共に重力波検出器 ネットワークを構築

KAGRA 大型低温重力波望遠鏡 HP より

検出原理と感度

基本構成はマイケルソン干渉計

重力波により両腕のミラーが動く →干渉光の強度が変化し、重力波信号を取得

両腕の長さの差を正確に測れると 重力波による両腕の差動変動を読み取れる

感度は両腕の長さの差に対応

強度安定化の意義

右図のように Laser で生じた

強度揺らぎは両腕のミラーに伝わる

干渉計が完全に対称であれば、両腕の ミラーで同じ輻射圧が生じ、強度揺らぎ は検出ポートで除去される

しかし、実際には

干渉計には非対称性が存在するため、 両腕のミラーで異なる輻射圧が生じ、 PD に雑音として混入してしまう

強度安定化の意義

右図のように Laser で生じた

強度揺らぎは両腕のミラーに伝わる

干渉計が完全に対称であれば、両腕の ミラーで同じ輻射圧が生じ、強度揺らぎ は検出ポートで除去される

しかし、実際には

干渉計には非対称性が存在するため、

両腕のミラーで異なる輻射圧が生じ、

PD に雑音として混入してしまう

レーザーの強度揺らぎを抑える 強度安定化システムが必要

最終的な要求値は30 Hz で 相対強度雑音が 2 × 10^{−9} /√Hz

Observation 3 での要求値は 相対強度雑音が**1 × 10^{−7} /√Hz**

制御ループは主に PD-SERVO-AOM の3つの構成からなる 1. PD でビームの一部をモニタし、その後に電圧信号に変換する 2. PD からの信号を Servo で適切な周波数特性を持つようにフィルタする

3. Servo からのコントロール信号を AOM にフィードバックする

富山大学での強度安定化

およそ $1 \times 10^{-8} / \sqrt{Hz}$ のレベルまで抑えることができている

富山大学の実験系と異なる点

- PMC, IMC と呼ばれる2つのリングキャビティ
 →ローパスフィルタの効果をもつためそれを補正する回路が必要
- 制御ループが大きい (PD から Servo まで 12 m, Servo から AOM driver まで 30 m)
 →位相が遅れる

オープンループ伝達関数 G $G = C_a C_b H F_1 F_2 A$

Main laser power 5.4 W Input power • In-loop PD 5.7 mW • Out-of-loop PD 4.8 mW

25 Hz ~ 5 kHz にかけて、要求値 1 × 10⁻⁷ /√Hz を達成!!

- 25 Hz 以下では Out-of-loop にビームジッターの影響が出ている
- 1 kHz 以上ではゲインが足りないためレーザーのノイズでリミットされている

両腕の長さの差

- Observation 3 での相対強度雑音の要求値 (1×10⁻⁷ /√Hz)を 25 Hz ~ 5 kHz にかけて達成した
- 強度安定化により感度を1桁向上させた
- 今後の展望
- 25 Hz 以下における相対強度雑音を抑えるために、ビームジッターの 影響を下げる
- Unity Gain Frequency を上げて、より高い周波数での安定化を目指す

Appendix

- 実際に設置した光学系
- 散乱光を防ぐため黒色のアルミ Boxで覆っている

