

Commissioning of the VIS system: Status

L. Trozzo on behalf of VIS team

OUTLINE

Introduction

Type A residual motion in FPMI configuration

Noise budget

Conclusion

Type A suspension

• <u>Tower</u>

- IP: sensor correction and damping filters are working properly
- ✓ GAS Filters: damping filters on
- ✓ BF: damping filter on (only for Yaw)
- Payload Control working properly & 90% done
 - Roll off broadband filters have been implemented
- Alignement sensing control
 - Balancing of the actuators and optimization of the local driving alignment matrix at MN stage is done
 - ✓ Works in progress for DHARD, CHARD, DSOFT, CSOFT loops

To Do

- Tidal control to compensate the long term cavity drift (works in progress..)
- Software tuning up for the observation phase (Guardian, SDF, etc...)
- Offload the GAS filter DC control offset accumulated to compensate the thermal drifts

Type B suspension

• <u>Tower</u>

✓ IP: damping filters are working properly (no sensor correction)

✓ GAS filters: damping filters on

Payload

✓ Roll off of the broadband damping filters has been implemented at BS mirror stage

Alignement sensing and control

- Balancing of the actuators and optimization of the local driving matrix at BS IM stage is done
- ✓ MICH loop has been engaged using the BS IM actuators

Software tuning up for the observation phase (Guardian, SDF, etc..)

Type Bp suspension

• Tower

✓ GAS filters: damping filters on

Payload

✓ broadband damping filters are working properly

PRM mirror has been set in misaligned mode to avoid scattered light in FPMI

➡ <u>To Do</u>

- TF measurement campaign from optics to DARM for noise budget
- Software tuning up for the observation phase (Guardian, SDF, etc..)

Type A: residual motion in FPMI configuration (I)

	L RMS [µm]	T RMS [µm]	Y RMS [µrad]
IX	0.08	0.12	0.15
EX	0.04	0.04	0.05
IY	0.05	0.05	0.05
EY	0.05	0.05	0.05

Thanks to sensor correction technique, the seismic noise is suppressed by a factor 3 @ 150 mHz

Type A: residual motion in FPMI configuration (II)

	L RMS [µm]	T RMS [µm]	Y RMS [µrad]
IX	0.5	0.3	0.15
EX	0.2	0.2	0.1
IY	0.4	0.5	0.2
EY	0.4	0.2	0.2

TM P

	P RMS [µ rad]	Y RMS [µ rad]
IX	0.15	0.1
EX	0.05	0.05
IY	0.04	0.05
EY	0.1	0.09

L.Trozzo, 24nd F2F KAGRA meeting, RESCUE U. Tokyo, 05-12-2019

10¹

Type A: KAGRA low frequency sensitivity in FPMI configuration

Angular control: Noise budget

The feedback force sent through the coils on the MN or IM can re-inject angular control noise.

To estimate the contamination level of the local payload control onto DARM:

✓ We measured the TFs from MN and IM of cry-payload to DARM (P,Y,L,R,etc..)

✓ We measured these TFs in Type A suspensions, BS, and PR3

✓ We projected the control noise on DARM

➡ The TF measurements campaign is still ongoing

More details about the TF measurements and noise budget are discussed in T. Yamada's poster

Noise budget: preliminary results

See T. Yamada's poster

L.Trozzo, 24nd F2F KAGRA meeting, RESCUE U. Tokyo, 05-12-2019

Noise budget: preliminary results

See T. Yamada's poster

L.Trozzo, 24nd F2F KAGRA meeting, RESCUE U. Tokyo, 05-12-2019

Conclusions and next steps

Type A

- ✓ Tower: All the control loops are working properly
- ✓ Tidal control: Work in progress
- ✓Payload : Control loops are working & 90% are implemented
- Payload: Some control loops have to be tuned (IX_IM_Y, EX_MN_R, IX_MN_R)
 Type B
- ✓ Tower and Payload: All the loops are working properly

Type Bp

✓ All the control loops are working properly

➡ Noise budget

- Working in progress for TypeB and Type Bp
- The TFs have to be integrated into the noise budget tool developed by A. Shoda

Thanks for your attention!