Fast localization of coalescing binaries with gravitational wave detectors and Low frequency vibration isolation for KAGRA

Yoshinori Fujii (U. of Tokyo, NAOJ)

KAGRA F2F meeting

Thesis contents

- 1. Introduction
- 2. Benefit of adding detectors to the observation network Fast localization simulation with one template search in hierarchical approach using HLVK-network [ref HLV]
- 3. Low frequency vibration isolation
- 4. KAGRA seismic Attenuation system
- 5. Suspension control design

Today's topic

6. Performance test of local control for KAGRA Type-A suspension

7. Summary

TypeA suspension & Controls toward lock acquisition

Before starting, What's Type-A?

 \rightarrow The longest suspension in KAGRA

- Upper 5 stages: room-temperature

- Lower 4 stages: cryogenic-temperature

And, Type-A has cryogenic part

Why pendulum?

\rightarrow To treat seismic noise

Seismic noise attenuation \rightarrow pendulum

Resonant damping / Mirror Alignment: necessary

- * DAMP resonances.
- * Don't care the controls noise.

* Freeze the mirror* Keep low noise

My work: Constructing controls toward interferometer lock

My work: Constructing controls toward interferometer lock

Control system for damping

Tower part:

- * controlled at each stage
- * DC or (DC+damping) control

Cryogenic payload part:

- * Actuated at IM(+MN) stages
- * Mainly optical levers are used.
- * Most of nuisance RM-chain modes
 → Finely tuned band-pass filters

Target: Damp all the resonances which disturbs the lock acquisition, within 1min.

Assuming rigid-bodies \rightarrow 75 modes

Measureable: → For 53 modes

Result: resonant frequency vs. decay time

w/o control

Result: resonant frequency vs. decay time

Result: resonant frequency vs. decay time

Reference mode list: https://gwdoc.icrr.u-tokyo.ac.jp/DocDB/0078/G1807866/001/sumconTypeA20161114.pdf

So, is this unknown Yaw mode problematic?

Summary (for damping resonances):

-- The installed damping control system damped all the resonances which disturbs the lock acquisition **for the lock-recovery mode**.

- -- exception: one mode
 - -- This mode looks from HL-system
 - -- This would be problematic when upper stages are used for the global controls. \rightarrow Further improvement
- In this work, the payload damping system is constructed mainly with the optical levers (relatively small linear range).
 better to utilize Photo-sensors more effectively.

Other notes

unknown Yaw mode [2]?

KAGRA F2F meeting on December 5th 2019, Yoshinori Fujii

Notes: RMS suppression

Ground motion and suspension response at KAGRA

Ref: <u>https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=10436</u>

神岡での地面振動レベルと、サスペンションの応答

Cut the seismic noise injection via LVDT
→ Sensor correction

シミュレーション: 90%tile 地面振動を仮定のときの、鏡揺れ(速度)

25 / 24

シミュレーション: 90%tile 地面振動を仮定のときの、鏡揺れ

29 / 24

→ 0.12 – 0.7Hz で揺れが低減された様子。詳細はセンサノイズ/地面振動に隠れた。

By combining (TML/IPL)*(IPL/GNDL)

By combining (TML/IPL)*(IPL/GNDL)*(GNDL_model)

Disp. TF:

From GND to TML

テスト実装: 2つのサスペンションのIP-stageに実装、Xarm で見ると

テスト実装: 2つのサスペンションのIP-stageに実装、Xarm で見ると

テスト実装: 2つのサスペンションのIP-stageに実装、Xarm で見ると

Verification of suspension performance

Settings for the measurement w/o controls:

With Tower-damped state,

- ordinal L-loop (blue) was opened at IP satge.
- instead,
 - green curve loop was used for the ALS DARM measurement,
 - red curve loop was used for the FPMI_DARM measurement.

Simulation models:

KAGRA F2F meeting on December 5th 2019, Yoshinori Fujii

39 / 24

Results: displacement transfer functions, from BFL

Results: displacement transfer functions, from IPL

Results: force transfer functions, from IPL

Results: force transfer functions, from BFL

- 2015.9.14 初検出! - BBH, BNS 検出!
- → 新しい天文学!

重力波検出器と、サスペンション

Michelson-based interferometer Fabry-Perot cavities 3km-arm

4) Suspended core optics

3 m

irror

dummv

Designing active control system / Control phase

Suppress large disturbance

Reduce RMS velocity RMS angle (Root-Mean-Square)

Keep position with low noise control

メイン鏡用の防振装置

メイン鏡用の防振装置

INVERTED PENDULUM with 3 horizontal

- -- LVDT & actuator units
- -- inertial sensors

GEOMETRIC-ANTI SPRING with 1 vertical LVDT & actuator unit

メイン鏡用の防振装置

(イタリアのグループの協力のもと開発)

BOTTOM-FILTER DAMPER with 3 horizontal & 3 vertical LVDT & actuator units

メイン鏡用の防振装置


```
制御ルーフ<sup>°</sup>at IP-stage:
```


52 / 24

Sensor correction filter の検討

54/16

Requirements, Type-A suspensions

Calm-down phase		
Item	Requirement	For/Determined by
$1/e \mod \det \det$	$< 1 \min$	Quick recovery
RMS displacement (L)	$<50~\mu{\rm m}$	Smooth transition to next phase
RMS displacement (T, V)	$< 0.1 \mathrm{~mm}$	Miscentering
RMS angle (P, Y)	$<50~\mu{\rm m}$	Smooth transition to next phase
Lock acquisition phase		
Item	Requirement	For/Determined by
RMS velocity (L)	$< 240 \ \mu m/s$	Auxiliary laser locking
RMS displacement (T, V)	$< 0.1 \mathrm{~mm}$	Miscentering
RMS angle (P, Y)	$< 880 \ {\rm nrad}$	Optical gain degradation $< 5\%$
Observation phase		
Item	Requirement	For/Determined by
Displacement noise (L) @ 10 Hz	$< 8 \times 10^{-20} \; {\rm m/Hz^{1/2}}$	Sensitivity
Displacement noise (V) @ 10 Hz	$< 8 \times 10^{-18} \; {\rm m/Hz^{1/2}}$	Sensitivity (1% coupling to L)
RMS displacement (T, V)	$< 0.1 \mathrm{~mm}$	Miscentering
RMS angle (P, Y)	< 200 nrad	Beam spot fluctuation $< 1 \ \rm mm$
DC drift (P, Y)	< 400 nrad/h	Sustainable lock for 1 day left

(P, Y) are set as $50 \,\mu\text{m}$ and $50 \,\mu\text{rad}$, respectively [28]. The RMS displacement for the other translational DoFs (T, V) are required for another reason which is mentioned shortly later.

Mechanical installation has done! HOWEVER .. According to a simulation, assuming 1% coupling,

