Future Plans of Ground Based GW projects 地上の将来計画

S.Haino KAGRA collaboration

CRC town meeting (Dec./21, 2019)

Typical GW strain amplitude

$$h \sim \frac{2G}{c^4 R} \stackrel{\cdots}{I} \sim \frac{r_{\rm g}}{R} = \frac{1}{1}$$

Schwarzschild radius

Distance to the source

e.g. Solar mass ($r_g \sim 3$ km) NS-NS binary merging at ~speed of light located at 100 Mpc away

$$h \sim \frac{3 \text{ km}}{100 \text{ Mpc}} = 10^{-21}$$

GW signal is very tiny but propagate as 1/R (not 1/R²)

Future Prospects (ground based)

- Near term (5~10 years) 2G (2nd Generation)
 - (Almost) funded in U.S. and Europe
 - 04 in 2022~
 - 05 in 2025~
- Far term (10~ years) 3G (3rd Generation)
 - New facility and big funding needed
 - Cosmic Explorer (US)
 - Einstein Telescope (ET)
 - Japan? Discussion in this session

- ...

Quick review in GW science

Based on SH's personal view with help of A.Nishizawa

Topic/Source	Ground (2G)	Ground (3G)	Space	Comment
BNS, NSBH	\bigcirc	Ø	\bigcirc	Science: Test of GR, NS EoS, Multi messenger, sGRB, Standard siren,
Stellar-mass BBH	Ø	Ø	\bigcirc	Science: Test of GR, Formation scenario, Space: inspiral phase
Intermediate BBH	\bigtriangleup	Ø	Ø	Science: Formation scenario, Test of GR,
Pulsar CW	△(?)	○(?)	△(?)	Depends on models Science: NS EOS and internal structure
Massive BBH	X	×	Ø	Science: Formation scenario, Test of GR,
EMRI Harmonics	×	\bigtriangleup	Ø	Science: Formation scenario, Test of GR,
WD, GB	×	×	Ø	Science: SN astrophysics, Standard siren
Supernovae	?	○(?)	△(?)	Depends on model and luck Science: explosion mechanism
Primordial GW	?	?	©(?)	Depends on models Science: Direct test of inflation
Cosmology	\bigcirc	Ø	Ø	Source: BNS/NSBH, BBH, WD, Primordial
Test of GR	Ø	Ø	Ø	Source: BNS/NSBH, BBH, EMRI

BNS: Binary Neutron Star, NSBH: Neutron Star-Black Hole, BBH: Binary Black Hole,

CW: Continuous Wave, EMRI: Extreme mass ratio inspiral, WD: White Dwarf, GB: Galactic Binary

LIGO/Virgo O4, O5 projection

• [LIGO-P1200087][arXiv:1304.0670]

LIGO/Virgo O4, O5 projection

- Updated on July/11/2019 at <u>LIGO-P1200087</u> also at <u>arXiv:1304.0670</u>
- LIGO 04: 160 190 Mpc 05: 330 Mpc
- Virgo O4: 90 120 Mpc

(Advanced LIGO+ in U.S.)

L. Cadonati 5th KIW 2019

Medium-term Future: A+ ~10^3 binary coalescences per year (circa 2024)

Modest upgrades to aLIGO and AdVirgo Frequency-dependent squeezing and lower optical coating thermal noise Reach: ~ 3x O2 ~500-1000 BBH/year ~10 NS-BH/year 1% H_0? ~200-300 BNS/year

QNM SNR ~35 for an event like GW150914

LIGO-G1900215

The 5th Kagra International Workshop - Perugia, February 14-15, 2019

For phase II that is the absolute best possible with large input and end mirrors and reduction of coating thermal noise

Frequency [Hz]

2019/12/21

 10^{1}

3G: Each region's prospects

Projects being discussed for many years

- U.S CE1 (2030~) /CE2 (2040~)
- Europe ET (2030~)

Projects being proposed recently

- Australia oz-HF (?)
- China ZAIGA (?)

L. Cadonati 5th KAGRA International Workshop 2019

The 3rd Generation

~10^5 binary coalescences per year (2030s)

Einstein Telescope

- European conceptual design study
- Multiple instruments in xylophone configuration
- underground to reduce newtonian background
- 10 km arm length, in triangle.
- Assumes 10-15 year technology development.

Cosmic Explorer

- NSF-funded US conceptual design study starting now
- 40km surface Observatory baseline
- Signal grows with length not most noise sources
- Thermal noise, radiation pressure, seismic, Newtonian unchanged; coating thermal noise improves faster than linearly with length

LIGO-G1900215

The 5th Kagra International Workshop - Perugia, February 14-15, 2019

Cosmic Explorer (U.S.)

Cosmic Explorer will proceed in two stages:

2030s: room-temperature glass at 1.0 μm (like aLIGO) 2040s: cryogenic silicon at 1.5 or 2.0 μm (like Voyager)

A two-stage approach

Y. Michimura Lab seminor (2017)

40 km scale

M. Evans GWADW 2019

Cosmic Explorer (U.S.)

M. Punturo KIW5 2019

The 3G/ET key points

- ET is THE 3G new GW observatory
 - 3G: Factor 10 better than advanced (2G) detectors
 - New:
 - We need a new infrastructures because
 - Current infrastructures will limit the sensitivity of future upgrades
 - In 2030 current infrastructures will be obsolete
 - Observatory:
 - Wide frequency, with special attention to low frequency (few HZ)
 - See later
 - Capable to work alone (characteristic to be evaluated in the international scenario)
 - (poor) Localization capability
 - Polarisations (triangle)
 - High duty cycle: redundancy
 - 50-years lifetime of the infrastructure
 - Compliant with the upgrades of the hosted detectors
 M.Punturo -ET

12

Operation planned from 2032

M. Punturo KIW5 2019

ET roadmap

ZAIGA-GW (China)

arXiv:1903.09288

Atomic Interferometer 300m vertical Tunnel funded and will be completed in 2020 Operation by 2025 (if fully funded)

Laser

AI

Then, KAGRA (Japan)

Contributions expected by KAGRA

 Detector network duty factor (N>=3) HLV 34% $(3/3) \rightarrow$ HLVK 65% (3/4) (assuming 70% each)

Application of Accelerator technologies to KAGRA

J-PARC neutrino super-conducting beam line KEK cryogenic center is leading the development of KAGRA cryogenic system

thicker and shorter preferred for efficient heat extraction

KAGRA Future Planning

- KAGRA has been focusing to finish the installation of current configuration ; discussion on the future upgrade was not so active until 2018
- Finally, KAGRA installation was almost completed and Future Planning Committee (FPC) has been established in Dec./2018 and started discussions on the future upgrade

KAGRA now and future

- Even though installation of components is done, we still have many issues [T. Tomaru's talk]
- Birefringence of sapphire bulk is one of the serious issue which prevents us from achieving the design sensitivity even in O4 (2022~)

Sapphire birefringence issue

KAGRA near future prospects

Towards O4 (2022~)

- Manage with the current (birefringent) sapphire
- Most of the time for commissioning/noise hunting
- Expected sensitivity up to 80 Mpc

Y. Michimura

JGW-G1911123

KAGRA near future upgrade

- Highest priority task is to develop high spec. sapphire mirrors with negligible birefringence
- Then, KAGRA design sensitivity is mostly limited by 10⁻¹⁹ quantum noise
- Frequency dependent Jue Juantum noise in wide frequency range

KAGRA near future upgrade

- Highest priority task is to develop high spec. sapphire mirrors with negligible birefringence
- Then, KAGRA design sensitivity is mostly limited by quantum noise
 10⁻²¹
- Frequency dependent squeezing technique is expected to reduce quantum noise in wide frequency range⁹ 10⁻²³

High spec. sapphire mirror

- We have been collaborating with crystal makers in Japan and a research institute in Lyon, France (iLM).
- Recently iLM got a new funding focused on the development of high quality and bigger sapphire substrate

Freq. dependent squeezing

• Active developments in NAOJ and oversea KAGRA institutes (e.g. Taiwan, Korea)

KAGRA near future projection

KAGRA's contribution in O4~O5

Sky localization of BNS to be significantly improved

KAGRA far future upgrade idea

• Even though KAGRA is facing a difficult time, once we find the solution of current issues, it is not a dream to consider the far future with ultimate potential of cryogenic sapphire

Ultimate goal of KAGRA

- Assuming 200kg, 10ppm/cm sapphire, 500 W laser and 10dB FD squeezing are available (in 10 years)
- Estimated sensitivity as ~500 Mpc [JGW-G1910533]
- It will be the most sensitive detector with the conventional (1064nm and existing facility) technology
- We need a name; ultimate KAGRA (uKAGRA) ?

Ultimate goal of KAGRA

- Assuming 200kg, 10ppm/cm sapphire, 500 W laser and 10dB FD squeezing are available (in 10 years)
- Estimated sensitivity as ~500 Mpc [JGW-G1910533]
- It will be the most sensitive detector with the conventional (1064nm and existing facility) technology
- We need a name; ultimate KAGRA (uKAGRA) ?

Technological challenges

- Big sapphire mirror with low absorption
 - Collaboration with iLM

- Proposal accepted for 200kg sapphire facility
- High power laser
 - 500W is not a dream in 5~10 years
- Suspension and heat extraction
- High power tolerance of room temp. optics

•

uKAGRA example sensitivity curve

Comparison with other detectors

Redshift reach VS total mass

In case of 100kg/350W

<u>JGW-T1809537</u>

		Combined
detuning angle (deg)	$\phi_{ m det}$	0.3
homodyne angle (deg)	ζ	93.0
mirror temperature (K)	$T_{ m m}$	20.0
SRM reflectivity $(\%)$	$R_{ m SRM}$	80.9
fiber length (cm)	$l_{ m f}$	33.1
fiber diameter (mm)	$d_{ m f}$	3.6
mirror mass (kg)	m	100
input power at BS (W)	I_0	3470
maximum detected squeezing	(dB)	5.1 (FC)
$100 M_{\odot}$ -100 M_{\odot} inspiral range	(Mpc)	702
$30 M_{\odot}$ - $30 M_{\odot}$ inspiral range (1	1762	
$1.4 M_{\odot}$ - $1.4 M_{\odot}$ inspiral range	307	
median sky localization error	(\deg^2)	0.099

KAGRA future projection

Prospects of GW science

- Continuous sensitivity improvements offer us increasing events (3rd power) and science cases
 - Neutron Star Equation of State (EoS)
 - Test of General Relativity at extreme conditions
- New generation of Multi-messenger science
 - Short GRB
 - Precision and independent determination of cosmological constants
- Possible detection of new sources
 - Supernovae (with EM, GW and neutrino)
 - Massive BBH, ...

Advantage of KAGRA in 3G era

- Existing facility
 - KAGRA observatory should work for >15 years
 - New and huge facilities needed for 3G (CE, ET)
 → difficulty and unknown about the fundings
- Long experience of cryogenic sapphire
 - New technology (e.g. cryogenic silicon mirror) is very challenging and uncertain for 3G (CE, ET)
 → they don't even know what are the issues

Concerns on a big facility - ILC

国際リニアコライダー計画の見直し案

に関する所見

総合所見

(中略) Science Council of Japan, Dec./ 2018

一方では、人類が持つ有限のリソースに鑑みれば、高エネルギー物理学に限らず、実験施設の<u>巨大化を前提とする研究スタイルは、いずれは持続性の限界に達する</u>ものと考えられる。ビッグサイエンスの将来の在り方は、学術界全体で考えなければならない課題である。

KAGRA future projection

Summary

- Even though it is a difficult time for KAGRA, the future is still bright
 - At least we know what are the issues
 - KAGRA can maximize the advantage of existing underground facility
- KAGRA should catch up to LV in ~5 years (~80 Mpc), reach the same sensitivity in ~10 years (~160 Mpc) and aim at the ultimate configuration (~500 Mpc)

Parameters assumed (dimensions)

As an example; further optimization may be needed

Parameter name	bKAGRA	uKAGRA
Mirror size (and mass)	ϕ 22cm ×15 cm (22.8 kg)	ϕ 45cm ×31.5 cm (200 kg)
Sapphire suspension	ϕ 1.6mm ×35cm	ϕ 2.7mm ×50cm
Wire safety factor	12.58	5.0
Intermediate mass	20.5 kg	180 kg
Beam size	3.5 cm	7.0 cm
Clear aperture (4 σ)	14 cm	28 cm
Coating improvement	None	x2
Squeezer	None	Freq. dependent (10 dB)
Filter cavity	None	300 m

Parameters assumed (power-related)

As an example; further optimization may be needed

Parameter name	bKAGRA	uKAGRA
Laser power (before PRM)	70.1 W	500 W
Power at BS	674 W	4.8 kW
Arm power	0.32 MW	2.3 MW
Mirror temperature	22 K	18.4 K
Heat to be extracted (ITM)	0.72 W	2.76 W
Heat absorption	50 ppm/cm	10 ppm/cm
Thermal conductivity coefficient $(\alpha_0)^{*1}$	7.98 W/K/m	16 W/K/m
Thermal conductivity $(\kappa)^{*1}$	7.2 kW/K/m	19.8 kW/K/m

^{*1} $\kappa = \alpha_0 d/d_0 T^{\beta}$, where d_0 is diameter of bKAGRA suspension (1.6mm)