4M-COCOS @ Fukuoka University

October 23, 2019

Present status and future prospects of KAGRA gravitational wave telescope

Yuta Michimura

Department of Physics, University of Tokyo

for the KAGRA Collaboration

Plan of This Talk

- Status of gravitational wave observations
 - Global network of detectors
 - Interferometric detectors
 - Noise sources and inspiral range
 - Observing scenario of LIGO, Virgo and KAGRA
- Status and future of KAGRA
 - Introduction to KAGRA project
 - Impact of KAGRA joining observing runs
 - Status of KAGRA commissioning
 - Upgrade plans for KAGRA

Global Network of GW Detectors

 Network of ground-based Advanced interferometric gravitational wave detectors
 GEO-HF

Advanced Virgo

LIGO-India (approved)

Advanced LIGO

KAGRA

3

Laser Interferometric GW Detector

• measure differential arm length change

Laser Interferometric GW Detector

• measure differential arm length change

Designed Sensitivity

 aLIGO, AdV and KAGRA has similar designed sensitivity

Noise Sources

 Sensitivity is limited by seismic noise, suspension and mirror thermal noise, and quantum noise

Noise Sources

Similar for aLIGO designed sensitivity

8

Noise Reduction Techniques

- Seismic noise
 - suspend mirrors for vibration isolation
- Mirror and suspension thermal noise
 - use materials with low mechanical loss
 - thinner and longer suspension
 - cryogenic cooling
 - use larger beam size (for mirror thermal)
- Quantum noise
 - optimize laser power
 - interferometer configuration
 - heavier mirror
- Longer arm is effective for reducing all noises 9

Quantum Noise and SQL

• You cannot surpass standard quantum limit just by changing the laser power

Quantum Noise and SQL

Quantum noise

Advanced Interferometer

Advanced Interferometer

 Power recycling effectively increases laser power and signal recycling broadens the bandwidth

Figure of Merit for Sensitivity

- Usually use binary neutron star inspiral range
- Sky-averaged distance to which SNR > 8

Inspiral Range

• Detectable distance using inspiral signal

$$\mathcal{R} = \underbrace{0.442}{\rho_{\text{th}}} \left(\frac{5}{6} \right)^{1/2} \frac{c}{\pi^{2/3}} \left(\frac{G\mathcal{M}_{\text{c}}}{c^3} \right) \left[\int_{f_{\text{min}}}^{f_{\text{max}}} \frac{f^{-7/3}}{S_n(f)} df \right]^{1/2}$$
Source location and polarization angle
$$\int_{\text{source location and polarization angle}}^{\text{SNR threshold}} \int_{\text{SNR threshold}}^{\text{SNR threshold}} \int_{\text{Detector noise}}^{\text{Frequency dependence of inspiral signal in squared characteristic strain}}$$

$$\int_{\text{max}}^{\text{Frequency}} \int_{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}}^{\text{Chirp mass (detector frame)}} \mathcal{M}_{\text{c}} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

$$\int_{\text{In source frame, m_{\text{source}}}}^{\text{Source}} \int_{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}}^{\text{Source}} \int_{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}}^{\text{Source}} \int_{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}}^{\text{Source}} \int_{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}}^{\text{Source}} \int_{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}}^{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}} \int_{\frac{c^3}{6^{3/2}\pi GM_{\text{tot}}}}^{\frac{c^3}{6^{3/2}\pi GM_$$

Observing Scenario of LVK

Status of O3 Run by LIGO/Virgo

- Apr 1, 2019 Sep 30, 2019: O3a
- Nov 1, 2019 Apr 30, 2020: O3b planned

Advanced LIGO Situation

- 4 km arms, 40 kg silica mirrors, room temperature
- 330 Mpc with upgrades (A+) in O5 coating improvements, frequency dependent squeezing

Advanced Virgo Situation

- 3 km arms, 42 kg silica mirrors, room temperature
- 260 Mpc with upgrades (AdV+) in O5 frequency dependent squeezing, larger test mass etc.

Not good at high frequencies since signal recycling is not done yet

KAGRA Situation

- 3 km arms, 23 kg sapphire mirrors, cryogenic
- 153 Mpc with designed sensitivity (detuned configuration to optimize quantum noise to BNS)

KAGRA Project

- Budget approved in 2010
- 110 institutes, 450+ collaborators (200 authors)
- Cryogenic and underground

Join us!

KAGRA Location

B

1 hour drive south from Toyama station

Mt. Ikenoyama

CLIO Super-Kamiokande

3 km

1000km

Office Control room

No other

KAGRA Tunnel entrance

Google

KAGRA Tunnel

 Laser beam goes back and forth inside two 3 km vacuum tubes

Completion Ceremony on Oct 4

- Almost all components installed
- Agreement between LIGO/Virgo signed

KAGRA Joining Observation

- Improves 3+ detector duty factor LHV 34 % → LHVK 65 % (assuming 70 % duty factor for single detector)
- Improves sky localization

1.5-1.25 Msun BNS at 40 Mpc LH: 120 Mpc V: 60 Mpc K: 10 Mpc With KAGRA

 Enables better GW polarization

measurements, distinguish non-GR polarization

H. Takeda+, PRD 98, 022008 (2018)

90% C.L. area (deg² HLVK 90% C.L. area (deg²

HLV

S. Haino,

JGW-G1808212

KAGRA Status 10-14

- First FPMI sensitivity 10⁻¹⁵ on August 10⁻¹⁶
- Now around 1 kpc
- - Frosting
 - Birefringence of sapphire mirrors
- Now mirrors are at ~250 K, power and signal recycling cavities cannot be locked until now

Effect of Frosting

- Finesse decreases at cryogenic temperatures (below ~30 K)
- Frosting from residual gas adsorption on mirrors
- Need to cool down the mirror at good vacuum

Effect of Birefringence

- Sapphire crystal axis and beam axis was not aligned well enough, and there's also inhomogeneity
- · Hard to lock power and signal recycling cavities due to large losses and dirty effects s-pol

Laser

p-pol beam

shape from

K. Kokeyama+, klog #9495

ITM reflection

Ask me later if

happened

You are curious about why this

-0.5

-1.5

0.05

Power and signal

recycling cavities

contaminated by p-pol

29

a few % p-pol

in reflection

K. Somiya+,

-0.05

arXiv:1907.12785

Current KAGRA Sensitivity

· Limited by technical noises and can be reduced

M. Nakano+, <u>klog #10869</u>

O3 Sensitivity

- Probably FPMI
- Possibly at room temperature \rightarrow a few Mpc at max

KAGRA in O4 (2021-2023)

- No new mirrors yet
- DRFPMI possible with polarizers in recycling cavities
- Still large optical losses

Laser

~70 W

O4 Sensitivity

 DRFPMI with large optical losses → ~80 Mpc at max

Future Plan for O5?

- Options will be
 - Reduce power to focus on low frequencies (intermediate-mass black holes)
 - Increase power to focus on high frequencies (neutron star physics)
 - Heavier mirror for better mid-frequencies
 - Frequency dependent squeezing for broadband

O5 Prospects

• With non-birefringent mirrors and frequency dependent squeezing (60 m filter cavity, 10 dB injected)

Beyond O5, Longer Term Plan

• If we are very optimistic (but not too crazy), further improvement is possible

High Frequency Option?

no SQ — SQL We can make a dip at 10 F=3000. Rs=99.5% ---- F=6000. Rs=99% Jue neutron star physics, enhance the chance of detection F=3000, Rs=99.5%, w/SQ · F=6000. Rs=99%. w/SQ **KAGRA** HF option ź 3 4 5 6 3 4 5 4 5 6 56 2 1000 10 100 Frequency (Hz) K. Somiya, **HF** option arXiv: 1909.12033 with squeezing (frequency independent) Laser Increase arm **Increase SRC length or** cavity finesse **Increase SRM reflectivity** \rightarrow SRC phase rotation **Power at ITM** can be reduced creates dip

Active R&D Ongoing

- Frequency dependent squeezing experiment using TAMA300 facility (NAOJ) E. Capocasa+, PRD 93, 082004 (2016)
- Sapphire mirror absorption and birefringence measurements (NAOJ) different company? annealing?
- Coating thermal noise measurement at cryogenic temperatures (NAOJ)
 JGW-G1808966
- Newtonian noise detector development (UTokyo)
- Optical spring experiments (Tokyo Tech, UTokyo) etc...

Summary

- The first sensitivity without recycling cavities was obtained, and currently under commissioning to reduce noises (now ~1 kpc)
- KAGRA starts observing run by the end of 2019
- Prospects for KAGRA sensitivity

 O3b (2019-2020): a few Mpc at max 10⁻¹⁴
 O4 (2021-2023): ~80 Mpc at max 10⁻¹⁴

Improved mirrors, squeezing

O5 (2024-): ~180 Mpc

200 kg mirrors, squeezing etc. Ultimately 500 Mpc? N 10 10⁻¹⁵ 10⁻¹⁶ 10⁻¹⁷ 10⁻¹⁸ 10⁻¹⁹ 10⁻²⁰ 10⁻²¹ 10⁻²² 10⁻²² 10⁻²³ 10⁻²⁴ 10¹ 10¹ 10² 10³ 10³

40

Option to focus on high freq. for supernovae?

Supplemental Slides

Profound World of Interferometer

 Interferometer controls and sensitivity design is really complicated and interesting

2G/2G+ Parameter Comparison

	KAGRA	AdVirgo	aLIGO	A+	Voyager
Arm length [km]	3	3	4	4	4
Mirror mass [kg]	23	42	40	80	200
Mirror material	Sapphire	Silica	Silica	Silica	Silicon
Mirror temp [K]	22	295	295	295	123
Sus fiber	35cm Sap.	70cm SiO ₂	60cm SiO ₂	60cm SiO ₂	60cm Si
Fiber type	Fiber	Fiber	Fiber	Fiber	Ribbon
Input power [W]	67	125	125	125	140
Arm power [kW]	340	700	710	1150	3000
Wavelength [nm]	1064	1064	1064	1064	2000
Beam size [cm]	3.5 / 3.5	4.9 / 5.8	5.5 / 6.2	5.5 / 6.2	5.8 / 6.2
SQZ factor	0	0	0	6	8
F. C. length [m]	none	none	none	16	300

LIGO parameters from LIGO-T1600119, AdVirgo parameters from JPCS 610, 01201 (2015)

43

KAGRA Detailed Parameters

K. Komori *et al.*, <u>JGW-T1707038</u>

• Optical parameters

- Mirror transmission: 0.4 % for ITM, 10 % for PRM, 15.36 % for SRM
- Power at BS: 674 W
- Detune phase: 3.5 deg (DRSE case)
- Homodyne phase: 135.1 deg (DRSE case)

• Sapphire mirror parameters

- TM size: 220 mm dia., 150 mm thick
- TM mass: 22.8 kg
- TM temperature: 22 K
- Beam radius at ITM: 3.5 cm
- Beam radius at ETM: 3.5 cm
- Q of mirror substrate: 1e8
- Coating: tantala/silica
- Coating loss angle: 3e-4 for silica, 5e-4 for tantala
- Number of layers: 22 for ITM, 40 for ETM
- Coating absorption: 0.5 ppm
- Substrate absorption: 50 ppm/cm

• Suspension parameters

- TM-IM fiber: 35 cm long, 1.6 mm dia.
- IM temperature: 16 K
- Heat extraction: 5800 W/m/K at 20 K
- Loss angle: 5e-6/2e-7/7e-7 for CuBe fiber/sapphire fiber/sapphire blade

• Inspiral range calculation

- SNR=8, fmin=10 Hz, sky average constant 0.442478
- Seismic noise curve includes vertical coupling, vibration from 44 heatlinks and Newtonian noise from surface and bulk

KAGRA Cryopayload

Figure by T. Ushiba and A. Hagiwara

3 CuBe blade springs

(SUS, 65 kg)

Platform

Marionette (SUS, 22.5 kg)

Intermediate Mass (SUS, 20.1 kg, 16 K)

Test Mass (Sapphire, 23 kg, 22 K) MN suspended by 1 Maraging steel fiber (35 cm long, 2-7mm dia.) MRM suspended by 3 CuBe fibers

Heat link attached to MN

IM suspended by 4 CuBe fibers (24 cm long, 0.6 mm dia) IRM suspended by 4 CuBe fibers

4 sapphire blades

TM suspended by 4 sapphire fibers (35 cm long, 1.6 mm dia.) RM suspended by 4 CuBe fibers

KAGRA Cryostat Schematic

Possible KAGRA Upgrade Plans

Y. Michimura+, <u>PRD 97, 122003 (2018);</u> <u>JGW-T1809537</u>

Possible KAGRA Upgrade Plans

Y. Michimura+, <u>PRD 97, 122003 (2018);</u> <u>JGW-T1809537</u>

		bKAGRA	LF	HF	40kg	FDSQZ	Combined
detuning angle (deg)	$\phi_{ m det}$	3.5	28.5	0.1	3.5	0.2	0.3
homodyne angle (deg)	5	135.1	133.6	97.1	123.2	93.1	93.0
mirror temperature (K)	$T_{ m m}$	22	23.6	20.8	21.0	21.3	20.0
SRM reflectivity (%)	$R_{ m SRM}$	84.6	95.5	90.7	92.2	83.2	80.9
fiber length (cm)	l_{f}	35.0	99.8	20.1	28.6	23.0	33.1
fiber diameter (mm)	d_{f}	1.6	0.45	2.5	2.2	1.9	3.6
mirror mass (kg)	m	22.8	22.8	22.8	40	22.8	100
input power at BS (W)	I_0	673	4.5	3440	1500	1500	3470
maximum detected squeez	ing (dB)	0	0	6.1	0	5.2 (FC)	5.1 (FC)
$100 M_{\odot}$ - $100 M_{\odot}$ inspiral ran	nge (Mpc)	353	2099	114	412	318	702
$30 M_{\odot}$ - $30 M_{\odot}$ inspiral range (Mpc)		1095	1094	271	1269	855	1762
$1.4M_{\odot}$ - $1.4M_{\odot}$ inspiral range (Mpc)		153	85	156	202	179	307
median sky localization error (deg^2)		0.183	0.507	0.105	0.156	0.119	0.099

GW150914 with KAGRA

Sky localization HLV 0.57 deg² HLVK 0.13 deg²

CQG 34, 174003 (2017)

Distance error HLV 179 Mpc HLVK 98 Mpc

(with designed sensitivity, 90% credible)

Sky Localization

