GWPAW2019 (RESCEU, University of Tokyo, Oct 14-17, 2019)

Improving the sensitivity of KAGRA gravitational wave detector

Yuta Michimura for the KAGRA Collaboration Department of Physics, University of Tokyo michimura@granite.phys.s.u-tokyo.ac.jp

We present the prospects for improving the sensitivity of KAGRA from O3 to O5. We show that it is likely that binary neutron star range of KAGRA will be only **a few Mpc in O3** and about 80 Mpc in O4 at most optimistic cases, with current birefringent sapphire input test masses. We also show that the sensitivity can be improved **upto 180 Mpc in O5**, with improved test masses and frequency dependent squeezing, without increasing the inout laser power from the originally designed value. Detector parameters critical for the sensitivity calculation are also explained.

Designed Sensitivity

Observing Scenario

KAGRA has smaller coating thermal noise than other Ηz detectors owing to cryogenic cooling, but has larger suspension thermal noise due to **thick and short** suspension fibers to extract heat from test mass mirrors [1,2].

Mirror Birefringence and Frosting

Unexpectedly large and inhomogeneous birefringence of sapphire input test masses (ITMs) was found. Birefringence creates unwanted polarization in the reflection of ITMs. The **optical losses** are as high as several %, and power and signal recycling cavities cannot be locked stably until now.

We also found arm cavity **finesse** decrease at cryogenic temperatures (< ~30 K) due to frosting of the test masses.

Arm cavity parameters gives

Further Reading

[1] Y. Michimura+, PRD 97, 122003 (2018) [2] Y. Michimura+, arXiv:1906.02866 [3] KAGRA Collaboration, PTEP 2018, 013F01 (208) [4] KAGRA Collaboration, <u>CQG 36, 165008 (2019)</u> [5] K. Somiya, arXiv:1909.12033 [6] K. Komori+, PRD 97, 102001 (2018) [7] E. Capocasa+, PRD 93, 082004 (2016)

bandwidth of quantum noise 10⁻²³↓ - ITM transmission: 0.4 % O4 limit with DRFPMI - Finesse: 1530 (designed) ITMY (BNS ~80 Mpc; with optical 10^{-24} losses in power and signal perature and finesse measurements Shape of 10² 10³ 10^{1} recycling cavities) **ETMX** unwanted frequency (Hz) O5 tentative plan with mirrors Ultimate? ΙΤΜΧ polarization (BNS ~500 Mpc) replaced and frequency component of Significant vertical thermal dependent squeezing (BNS reflected beam noise comes from blade springs ~180 Mpc; 60 m filter cavity assumed) ⊦1100 ⊒ Finesse decrease from X-arm and CuBe fibers suspending the Y-arm temperature and finesse measurements intermediate mass (IM) Blade spring ETMY - Blade spring resonance: CuBe fiber bounce 14.5 Hz vertical Horizontal 2 kHz horizontal .£ 10⁻²² Vertical (lower the better) Finesse decrease suspension - Blade spring loss angle: 7e-7 Ref. [6] 10⁻²⁶ thermal - CuBe fiber loss angle: 5e-6 06-27 07-04 07-11 07-18 07-25 08-01 08-08 08-15 08-15 08-22 100 Frequency [Hz] - IM temperature: 16 K IMMT1 PRM X-arm cavity ITMX MCo MCi IMMT1 POP Parameters for sapphire fibers IMC REFL REFL **Power recycling cavity** suspending the test mass is critical for suspension thermal noise and heat Signal recycling cavity extraction calculations. POS Cav parameters changes the - length: 35 cm shape of quantum noise - diameter: - SRM transmission: bu 1.6 mm in design, 1.4 mm for O5?? 30% for O3 - loss angle: 2e-7 15 % for O4-O5? - thermal conductivity: 5800 W/m/K - Detuning angle: 0 deg for 03-05? Mirror parameters are critical for calculating coating and substrate thermal noises 3.5 deg in design Ц - size: 22 cm dia. 15 cm thick Frequency dependent squeezing - mass: 22.8 kg would be injected from here in O5 ·(📥) 🖸 - temperature: 22 K (100-250 K for O3??) SRM Frosted mirror to reduce quantum noise in broad - loss angle: 1e-8 (@ 60 K) band [7] - substrate absorption: - Filter cavity length: 60 m in O5? OFI 50 ppm/cm in design - Injected squeezing: 10 dB in O5? 25 ppm/cm for 05?? OMC AS - coating loss angle: 3e-4 / 5e-4 135.1 deg in design - coating absorption: 0.5 ppm

Increasing input laser power reduces quantum noise at high frequencies but increases at low frequencies.

- Power at BS:

1 W for O3 due to no power recycling? 200 W for O4 due to reduced recycling gain from birefringence? 673 W for 05?

Readout quadrature changes the shape of the quantum noise [5] - Homodyne angle: 90 deg for O3-O5?

