KAGRA腕共振器のための 9段防振懸架システムの制御

発表者: 奥富弘基

東大宇宙線研,東大理^A,国立天文台^B,富山大理^C,シラキュース大^D, KAGRAコラボレーション^E 藤井善範^A,L. Trozzo,高橋竜太郎^B,正田亜八香^B,山田智宏, 牛場崇文,榎本雄太郎^A,中野雅之^C,S. W. Ballmer^D,横澤孝章, 山本尚弘,阿久津智忠^B,麻生洋一^B,都丸隆行^B, KAGRAコラボレーション^E

KAGRA防振懸架システム

Type-A suspension

性能評価と制御の実装

熱雑音低減 さまざまな利点

地下の地面振動

KAGRA感度曲線

KAGRA感度曲線

地面振動

 $10^{-10} \, \text{m/Hz}^{1/2}$

鏡変位雑音の要求値 (>10 Hz)

 $10^{-19} \ \text{m/Hz}^{_{1/2}}$

Type-A Suspension

Type-A Suspension

Type-A Suspension

タワー

- 上5段、低周波振動子からなる常温部
- **倒立振子 (IP)**:水平方向の共振~70 mHz
- Geometric Anti-Spring (GAS) フィルタ: 垂直方向の共振~300 mHz

低温ペイロード

▶ 下4段、低温部 (~ 20 K)

サファイア鏡: 22.5 kg(ファイバ接着用耳含む)

Pre-Isolator

Bottom Filter

低温ペイロード

低温ペイロード構成

懸架システムの役割

1. 防振比の測定

单一腕共振器 での測定

モデル予測とはよく 一致(特に>1Hz)

2.RMS抑制のためのローカル制御

センサーペイロード

アクチュエータ - ペイロード

コイルマグネットアクチュ
 エータ
 MN-MNR間の相対6自由度

l コイルマグネットアクチュ エータ IM-IRM 間の相対6自由度

コイルマグネットアクチュ エータ TM-RM 間の相対3自由度 (L, P, Y)

角度制御

ロード制御

Broadband feedback 機械共振を利用し ピークで高い制御 ゲインを持たせる

MN

ΙΜ

TM

ACT

10²

Type-A suspension 全4台が干渉計とのコミッショニング中

防振性能の評価 モデル予測とよく一致している 観測帯域での評価は今後の課題

RMS抑制のためのローカル制御 ローカル制御における要求値は概ね満たしている グローバル角度制御に向けて準備中

Components

TYPE-A	TYPE- B	TYPE- BP
9 stages	5 stages	3 stages
Inverted Pendulum	Inverted Pendulum	_
GAS Filter x5	GAS Filter x3	GAS Filter x2
Payload: Cryogenic	Room-temperature	Room-temperature
For 4 TMs	For BS and 3 SRs	For 3 PRs

Performance

Tower

PRE-ISOLATION STAGE

Inverted pendulum legs

Horizontal resonance ~ 70 mHz

MECHANICAL FILTER CHAIN

5 geometric anti-springs

Vertical resonance ~ 300 mHz

CRYOGENIC Payload

RADIATION + **C**ONDUCTIVE **COOLING**

Black coated surface

Pure aluminum heat links

SAPPHIRE TEST MASS & FIBERS

Weight: 22.5 kg (ears included)

Hydro-catalysis bonding

Degrees of Freedom

Heat Link

cf. T. Yamada Master Thesis (2018)

Heat Link INDUCES Vibration

Heat Link Vibration Isolation System

Heat Link Vibration Isolation System

Vibration in the Cryostat

HL-VIS Design Performance

by T. Yamada

Vertical-to-Longitudinal Coupling

 $\frac{\text{(Longitudinal)}}{\text{(Vertical)}} \lesssim 1\%$

Vertical-to-Longitudinal Coupling

A BARRIS STRAND ROSA STRAND RECONTANT

Payload Structure

Payload Structure

VIBRATION ISOLATION RATIO Measurement

Local Sensors - Tower

Local Actuators - Tower

Torsion Mode Damping

BF Damper

LVDT + Coil-magnet actuator unit

6 DoFs sensing & actuation w.r.t. the ground

Damping LooP

Decay Time Measurement

MODE	DECAY TIME
#1	961.4 sec.
#2	158.6 sec.
#3	1155.5 sec.

Decay Time Measurement

MODE	DAMPED DECAY TIME
#1	24.8 sec.
#2	43.9 sec.
#3	9.5 sec.

Yaw Mode Damping

Yaw Mode Damping

Modal Damping

Decouples sensor signals into modal amplitudes

Vertical Modes

GAS Filter Response (1)

MODEL PREDICTION

Gas Filter Response (2)

MEASUREMENT RESULT

Modal responses can make the filter design simple

Modal Spectrum

MEASUREMENT RESULT

UNDAMPED

1ST & 2ND MODE DAMPED

Hierarchical Control

