Interferometer control of KAGRA

Masayuki Nakano Univ. of Toyama

- Gravitational wave detector
- Control of the interferometer
- Experimental result: Status of KAGRA interferometer
- Summary and next step

- · Gravitational wave detector
- Control of the interferometer
- Experimental result: Status of KAGRA interferometer

Gravitational Wave

Gravitational wave:

Cause variation of the distance between freefalling masses.

IFO configuration

 Michelson interferometer

IFO configuration

- Fabry-Perot Michelson
 Interferometer (FPMI)
 - → Put Fabry-Perot cavities in the arm in order to lengthen the effective arm length.

IFO configuration

- Dural-Recycling FPMI (DRFPMI)
 - Put two recycling cavities to enhance the sensitivity for the gravitational wave.

- Gravitational wave detector
- Control of the interferometer

Experimental result: Status of KAGRA interferometer

IFO control

- The GW detector is an IFO composed of multiple optical cavities.
 - → All of them needs to be 'locked' on the resonance.

The IFO has five degree-of-freedoms
 (DoFs) in length needed to be controlled.

IFO DoFs

For arm cavities: Common arm length (DARM): (Lx + Ly)/2 Differential arm length (CARM): (Lx + Ly)/2

Actuators

- All mirrors for the IFO are suspend and can be actuated by using coil-magnet actuators.
- · The laser frequency can be also actuated.
- Actuators for each DoF:
 - CARM : the laser frequency
 - V DARM : One of end test mass(ETM)
 - MICH : The beam splitter
 - SRCL : The power recycling mirror
 - V PRCL : The signal recycling mirror

Sensors

Lock acquisition

- \cdot The signal from the sensors are not well diagonalized.
- · Also, their linear range of the error signal is limited around the resonance.
- Therefore, we need to establish the lock acquisition procedure to operate the full interferometer.
 - → We use several auxiliary signals during the lock acquisition. (ex. Transmission PD signal, normalized RF PD signal, demodulated by triple of modulation frequency, and so on)
 - → In future, we will generate the third modulation sideband which does not enter any cavity.

Intra-cavity

power

Error signal

	DARM	CARM	MICH	PRCL	SRCL
AS_DC	1.0	3.3×10^{-6}	7.2×10^{-4}	1.8×10^{-7}	5.0×10^{-5}
$\mathbf{REFL}_{-1}\mathbf{I}$	9.6×10^{-3}	1.0	5.0×10^{-3}	6.2×10^{-2}	3.0×10^{-2}
$\mathbf{REFL}_{-1}\mathbf{Q}$	7.1×10^{-3}	2.6×10^{-4}	1.0	8.5×10^{-2}	2.5×10^{-2}
POP_2I	5.4×10^{-2}	5.7	1.8×10^{-2}	1.0	2.7×10^{-4}
POP_1I	1.8×10^{-1}	19.0	1.1×10^{-1}	2.1	1.0

Sensing matrix for each DqF [1]

Arm length stabilization

- We are using the auxiliary laser to utilize the wider linear range length sensor.
 - → Main and aux. Laser are phase locked each other, and the aux. laser lock to the cavity resonance.
 - → Then we can obtain the relative fluctuation between the main laser frequency and the cavity resonance.
- We can control the arm cavity length independently from other DoFs, and even hold the arm cavities on the off-resonance for the IR main laser.

- · Gravitational wave detector
- Control of the interferometer
- Experimental result:
 Status of KAGRA interferometer

Status of the IFO control in KAGRA

- We succeeded to lock the IFO with FPMI configuration.
- Once the FPMI got locked, it continues to be locked for more than 6 hours.
- The lock acquisition procedure is automated.

Phase 1.

- ➡ Lock the aux. laser to the Xarm cavity.
- → Hold the laser frequency at offresonance of the arm cavity.

Phase 2.

- Bring the Xarm close to the resonance by the aux. laser
- → Hand-off the control from aux. laser signal to the transmitted signal.

- Phase 3.
 - → Lock the aux. laser to the Yarm cavity.
 - Hold the laser frequency at off-resonance of the arm cavity.
 - → The control signal is fed back to the suspension.

- Phase 4.
 - → Lock the center Michelson.

Phase 5.

 \rightarrow Bring the other arm on the resonance.

Phase 6.

•

→ Hand-off the control from aux. signals to the RF PD signals.

Actuation of the suspension

- \cdot One difficulty of the IFO control is the suspension actuation.
- Especially, the suspension for the arm cavity mirrors are huge and complicated.
 - → 13 meter height
 - → 8-stage pendulum
- For the stable operation of the IFO, the actuators need to be well tuned.
 - → Diagonalization of the longitudinal motion and the angular motion.
 - Design of the control filter for the hierarchical control

K. Okutom

Suspension control

28

- To satisfy the control band width and the actuator range, two or more stages of the suspension are actuated in 'hierarchical' way.
- To realize the stable control, the control filter needs to be finely tuned.
- The control filter for one of the ETM has been implemented, and stably actuated.

One of the control filter for hierarchical control

Latest sensitivity

Latest sensitivity

Noise hunting is on going in parallel.

 Many physical environment monitor system. (ex. Seismometer, microphone, magnetometer, and so on.)

- · Gravitational wave detector
- Control of the interferometer
- Experimental result:
 Status of KAGRA interferometer
- Summary and next step

For the next

- · Lock acquisition of Dual-Recycling FPMI.
- · Noise hunting
 - → 45 Hz resonant peak.
 - → PD dark noise.
 - → Frequency noise.
 - → …
- Alignment sensing and control
 - → Actuator diagonalization
 - → Sensing matrix measurement
 - → Noise hunting for ASC

Summary

- $\cdot\,$ We succeeded to lock the FPMI.
- FPMI control is stable and lock acquisition process is automated.
- Still, we have two DoFs not to be succeeded to control. Move on it.
- Noise hunting is on going in parallel.

Appendix

Signal acquisition

- To extract the error signal for the cavity length control, frontal modulation method is used.
 - → Generate the phase modulation sideband in a radio frequency.
 - → Only the carrier resonates in the cavity and the sideband are reflected from the input mirror.
 - → By using the sideband as the local oscillator, we can extract the cavity length information.

Arm length stabilization

- The main laser and the aux. laser is locked in those phase each other.
- By locking the aux. laser to the arm cavity, we can know the relative fluctuation of the main laser frequency and the arm cavity resonance.

Diagonalization of the suspension

Angular motion of the suspension is small enough to maintain the lock for several hours.

Angular motion with/without 37 the feedback. TAUP2019 9-13, Sep., 2019,

