ABCD Matrix and q-parameter evolution

ABCD Matrix Convention

There are two conventions for the definition of (x, x^{\prime}).
The first one is

$$
x^{\prime}=\frac{d x}{d z}
$$

used by Kogelnik \& Lee, and Gerhard Kloos.
The other one is

$$
x^{\prime}=n \frac{d x}{d z}
$$

used by Siegman.
K\&L assumes that the input and output planes are always in the vacuum ($n=1$).
Siegman deals with more general cases where the input and output planes may be in different medium.

$$
\frac{1}{q(z)}=\frac{1}{R(z)}-i \frac{\lambda}{\pi w^{2}(z)}
$$

λ is always the wavelength of the light in the transmitting medium.

$$
\lambda=\frac{\lambda_{0}}{n}
$$

At the interface of two media, the beam size should not change.
This means that the value of q must change even if it is a flat interface plane with normal incidence.
The reduced q-parameter $q r=q / n$ is thus convenient, because it does not change between two media.

ABCD transformation rule

For q-parameter: $\quad \frac{q_{2}}{n_{2}}=\frac{A\left(q_{1} / n_{1}\right)+B}{C\left(q_{1} / n_{1}\right)+D}$
For reduced q-parameter: $\quad q_{r_{2}}=\frac{A q_{r_{1}}+B}{C q_{r_{1}}+D}$

Propagation in medium with index n

$$
\begin{array}{r}
\left.\left\lvert\, \begin{array}{cc}
A & B \\
C & D
\end{array}\right.\right)=\left|\begin{array}{cc}
1 & L / n \\
0 & 1
\end{array}\right| \\
q_{2}=q_{1}+L
\end{array}
$$

Slanted incidence to a plane interface

$$
\left|\begin{array}{cc}
A & B \\
C & D
\end{array}\right|=\left|\begin{array}{cc}
\frac{\cos \theta_{2}}{\cos \theta_{1}} & 0 \\
0 & \frac{\cos \theta_{1}}{\cos \theta_{2}}
\end{array}\right|
$$

The beam size changes between the interface. This can be derived from a purely geometrical consideration.

Note that after a transmission of an oblique optics, the beam becomes elliptic.

q-parameter in gtrace

In gtrace, q-parameters of a beam are stored in five attributes.
q : average q-parameter of the beam. If the beam is elliptic, this is a q-parameter of a circular beam best matching the elliptic one.
qx: q-parameter of the beam in x-direction.
qrx: reduced q-parameter in x-direction. $q r x=q x / n$
qy: q-parameter of the beam in y-direction.
qry: reduced q-parameter in y-direction. qry $=q y / n$

If any of the last 4 parameters are changed, all the other related parameters are automatically updated.
ABCD transformation is calculated with the reduced q-parameters. The result is reflected to the normal q-parameters immediately.

