- Underground and Cryogenic interferometric 3 km gravitational-wave detector at Kamioka, Japan
- ♦ KAGRA finished all the installations May 2019, and the first full lock of FPMI for 5+ hours Aug 23.
- Now trials with DRFPMI. Final configuration will be decided soon.
- KAGRA plans to join LV Observation Run 3 from the end of 2019.
- Towards MoA with LIGO/Virgo, the round table discussion is ongoing in this LVC meeting.

Aug.23 @ KAGRA F2F meeting at Toyama

Hisaaki Shinkai (Osaka Inst. Tech.) KAGRA Scientific Congress, board chair

on behalf of the KAGRA collaboration

KAGRA (Kamioka GW Observatory)

◆ Underground and Cryogenic interferometric 3 km gravitational-wave detector at Kamioka, Japan

KAGRA collaboration

http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/KAGRA

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

110 groups, 14 countries 350+ active members

Default-author list 2018 has 200 members. Obs. shift candidate list has 260 names. +60 collaborators in the past 6 months.

Organize Face-to-Face meeting 3 times (April/August/Dec) / year

F2F Aug. 2019 @ U. Toyama, Japan F2F December 2019 @ U. Tokyo, Japan

Organize International Workshop 2 times / year

KIW5 Feb. 2019 @ Perugia, Italy KIW6 June 2019 @ Wuhan, China KIW7 May 2020 @ NCU, Taiwan

Organization of KSC (KAGRA Scientific Congress)

KAGRA collaboration papers

nature astronomy

PERSPECTIVE nttps://doi.org/10.1038/s41550-018-06

KAGRA: 2.5 generation interferometric gravitational wave detector

KAGRA collaboration

The recent detections of gravitational waves (GWs) reported by the LIGO and Virgo collaborations have made a significan impact on physics and astronomy. A global network of GW detectors will play a key role in uncovering the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA, a new GW detector with two 3 km baseline arms arranged in an 'L' shape. KAGRA's design is similar to the second generations of Advanced LIGO and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors. This low-tem advantageous for improving the sensitivity around 100 Hz and is considered to be an important feature for the third-generation GW detector concept (for example, the Einstein Telescope of Europe or the Cosmic Explorer of the United States). Hence, KAGRA is often called a 2.5-generation GW detector based on laser interferometry. KAGRA's first observation run is scheduled in late 2019, aiming to join the third observation run of the advanced LIGO-Virgo network. When operating along with the exist ing GW detectors, KAGRA will be helpful in locating GW sources more accurately and determining the source parameters wi nigher precision, providing information for follow-up observations of GW trigger candida

eeing is believing. We were reminded of this proverb when Figure 1 shows the location of KAGRA in Kamioka, Japan. Th we received the news of the discovery of GW150914, the first interferometer shares the area with the well-known neutrino detec J direct detection of gravitational waves (GWs)¹. The existence tors Super-Kamiokande and KamLAND. Kamioka is a small town of GWs has been believed since Russel Hulse and Joseph Taylor dis- located 1.5 hour driving distance from the city of Toyama, with its covered the binary pulsar PSR B1913 + 16 in 1974 (ref.²). The long-term radio observation of this system has shown that the observed

Compared with existing laser interferometers, KAGRA is techorbital decay is well described by the energy/angular momentum loss due to GW emission as predicted by Einstein in 1915 (ref. ³). Inologically unique in two features. Firstly, it is located in an under-ground site to reduce seismic noise. Secondly, KAGRA's test masses

Nature Astronomy, 3 (2019) 35. [arXiv:1811.08079]

introduction & history

IOP Publishing

Class. Quantum Grav. 36 (2019) 165008 (22pp)

First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA

CQG 36 (2019) 165008 [arXiv:1901.03569]

phase-1 operation (2018)

What is an Accepted Manuscript?

Class. Quant. Grav. 36 (2019) 095015 [arXiv:1901.03053] Vibration isolation

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

Classical and Quantum Gravity

https://doi.org/10.1088/1361-6382/ab28a9

arXiv.org > astro-ph > arXiv:1908.03013

Astrophysics > Instrumentation and Methods for Astrophysics

Application of the independent component analysis to the iKAGRA data

KAGRA Collaboration: T. Akutsu, M. Ando, K. Arai, Y. Arai, S. Araki, A. Araya, N. Aritomi, H. Asada, Y. Aso, S. Atsuta, K. Awai, S. Bae, Y. Bae, L. Baiotti, R. Bajpai, M. A. Barton, K. Cannon, E. Capocasa, M. Chan, C. Chen, K. Chen, Y. Chen, H. Chu, Y-K. Chu, K. Craig, W. Creus, K. Doi, K. Eda, S. Eguchi, Y. Enomoto, R. Flaminio, Y. Fujii, M.-K. Fujimoto, M. Fukunaga, M. Fukushima, T. Furuhata, G. Ge, A. Hagiwara, S. Haino, K. Hasegawa, K. Hashino, H. Hayakawa, K. Hayama, Y. Himemoto, Y. Hiranuma, N. Hirata, S. Hirobayashi, E. Hirose, Z. Hong, B. H. Hsieh, G–Z. Huang, P. Huang, Y. Huang, B. Ikenoue, S. Imam, K. Inayoshi, Y. Inoue, K. loka, Y. Itoh, K. Izumi, K. Jung, P. Jung, T. Kaji, T. Kajita, M. Kakizaki, M. Kamiizumi, S. Kanbara, N. Kanda, S. Kanemura, M. Kaneyama, G. Kang, J. Kasuya, Y. Kataoka, K. Kawaguchi, N. Kawai, S. Kawamura, T. Kawasaki, C. Kim, J. C. Kim, W. S. Kim, Y.-M. Kim, N. Kimura, T. Kinugawa, S. Kirii, N. Kita, Y. Kitaoka, H. Kitazawa, Y. Kojima, K. Kokeyama, K. Komori, A. K. H. Kong, K. Kotake, C. Kozakai, R. Kozu, R. Kumar, J. Kume, C. Kuo, H-S. Kuo, S. Kuroyanagi et al. (152 additional authors not shown) (Submitted on 8 Aug 2019)

submitted to PTEP [arXiv:1908.03013] [JGW-P1910218] **iKAGRA** data analysis

Search..

Brief History of KAGRA

calendar year	2	010	2011	2012	2013	2014
Project						
Start Tur	nne	el Exca	avation			
installatio	n					
						op

= initial KAGRA iKAGRA **bKAGRA** = baseline KAGRA

[arXiv:1712.00148]

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

KAGRA

today

[arXiv:1901.03569]

On-going schedule

_										
						20	19			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug		
				L	IGO/V	IRGO O	bser	/ation		
_										
_										
_	instal	, insta	ll, insta		FPMI/DRMI					
_	pump	ing, pu	umping	J	commissioning					
_	coolin	ig, coo	ling,							
						too	•	ookor		
_						tes		eeker		
_						run		r		

We are commissioning with FPMI with PR & SR. Test Runs:

June 6 X-arm

June 19 PR, SR

July 13 short IFO

August 23 First lock of FPMI, 5+ hours, 1 kpc BNS range

August 23 First lock of FPMI

We appreciate contributions of **Stefan Ballmer, Valery Frolov, Keita Kawabe** (July & August), Jenne Driggers, Stefan Ballmer, Rana Adhikari (September) at KAGRA on-site.

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

automated, 5+ hours, 1 kpc BNS range

Current Concerning Issues

* Asymmetry of Finesse ($\sim 10\%$) due to difference of transmissivity of ITMx & ITMy

* **Polarization (sapphire birefringence)** due to inhomogeneity of ITMx & ITMy low PR & SR gain, no replacements for O3. May be the same in O4.

* Frosting of Mirrors due to incompleteness of vacuum

* **Refrigerator maintenance cycle** (Mean Time Between Failure) is shorter than expected

thermal shield valves, every two weeks, \$ 5K

* **Type A Suspensions** (ITMs ETMs) requires stabilazation circuit

requires better damping servos

Commissioning tools

We appreciate contributions of Joseph Areeda, Nicolas Arnaud, Andrew Lundgren, Duncan MacLeod, Florent Robinet, Siddharth Soni, Alex Urban at KAGRA on-site.

Data-exchange tests with low latency

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

Low Latency h(t) transfer KAGRA tunnel —> the surface —> Kashiwa server : 3 sec LHO/LLO —> Caltech —> Kashiwa : 6-14 sec

(time includes reconstruction)

LV data distribution to Tier-x level will be monitored by Tier-site managers.

11

JPRC (Joint Run Planning Commitee)

KAGRA focused week: June 6 & August 1

https://wiki.ligo.org/LSC/JRPComm/Agenda2019Jun06 https://wiki.ligo.org/LSC/JRPComm/Agenda2019Aug01

LVC-KAGRA taskforce term report (draft) **JGW-T1910330**

How much source localization is impr

(a) KAGRA's BNS range: 25 Mpc							
Source	(HL, HV, LV)	(HLK, HVK, LVK)	HLV	HLVK			
BBH	607	336	79.2	57			
NSBH	682	384	90.2	67.9			
BNS	410	215	54.5	35.3			

(b) KAGRA's BNS range: 15 Mpc						
Source	(HL, HV, LV)	(HLK, HVK, LVK)	HLV	HLVK		
BBH	545	447	68.1	53.8		
NSBH	614	482	75.2	60.5		
BNS	410	323	54.5	45.3		

(c) KAGRA's BNS range: 8 Mpc						
Source	(HL, HV, LV)	(HLK, HVK, LVK)	HLV	HLVK		
BBH	545	525	68.1	65.4		
NSBH	614	567	75.2	68.3		
BNS	410	393	54.5	49.5		

Table 1: The median of the distribution of 90%-credible region of the source localization. All values are in the unit of deg^2 .

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

KAGRA's contribution in O3 (report draft)

LVC-KAGRA taskforce

Yoshio Saito (KAGRA - leader, project manager) Hideyuki Tagoshi (KAGRA - Data analysis) Takahiro Yamamoto (KAGRA - Calibration) Osamu Miyakawa (KAGRA - commissioning) Hisaaki Shinkai (KAGRA - MoU) Sadakazu Haino (KAGRA data analysis)

Steve Fairhurst (LSC) Patricia Schmidt (LSC) Leo Singer (LSC) Helios Vocca (Virgo)

Table 4: Observing duty cycles as of July 31, 2019. 5

	H1	L1	V1		actual	e
Observing	69.7~%	72.9~%	76.4~%	Triple	42.7~%	ſ
Ready	0.8~%	0.4~%		Double	37.2~%	l
Locked	3.3~%	3.7~%	5.7~%	Single	16.2~%	l
Not locked	26.2~%	23.0~%	17.9~%	No interferometer	3.9~%	
						4

Table 5: Estimation of the observing duty cycles for several cases of that of KAGRA (P_K) , using $P_H^{O3} = 0.697, P_L^{O3} = 0.729$, and $P_V^{O3} = 0.764$ (the numbers of H1/L1/V1 of July 31, 2019).

P_K	0.4	0.5	0.6	0.7	0.8	0.9
Quadra	15.5~%	19.4~%	23.2~%	27.2~%	31.1~%	34.9~%
Triple	40.6~%	41.1~%	$41.5 \ \%$	42.0~%	42.4~%	42.9~%
with K	17.3	21.6	26.0	30.3	34.7	39.0
w/o K	23.3	19.4	15.5	11.6	7.8	3.9
Double	32.4~%	29.6~%	26.9~%	24.1~%	21.4~%	18.7~%
with K	6.4	8.0	9.6	11.2	12.8	14.3
w/o K	26.0	21.7	17.3	13.0	8.7	4.3
Single	10.3~%	8.9~%	$7.5 \ \%$	6.1~%	$4.7 \ \%$	3.3~%
No interferometer	1.2~%	1.0~%	0.8~%	0.6~%	0.4~%	0.2~%

publication plan O3b, white paper 2019

LV-DAC white paper 2019

at least 3 new proposals from KAGRA-CBC

LV-DAC publication plan O3b

Ringdown search BH echo search test of massive gravity

MoA round table

	The LV MoU (March 2019)↔	The revision plan 🛛
+		
	Memorandum of Agreement 🚽	Memorandum of Agreement 🚽
	between «	between₄
	VIRGO	VIRGO, 4
		KAGRA
	and the	and the
	Laser Interferometer Gravitational Wave Observatory (LIGO)4	Laser Interferometer Gravitational Wave Obs (LIGO)
	March 2019	October 2019
	4	4
	€ I	€ I
	¢۲	ęł
	وا	ę۱ L
	Purpose of agreement:	Purpose of agreement: 4
	4	4
	The purpose of this Memorandum of Agreement (MOA) is to	The purpose of this Memorandum of Agreement (M
	establish and define a collaborative relationship between	establish and define a collaborative relationship betwee
	VIRGO and the Laser Interferometer Gravitational Wave	KAGRA and the Laser Interferometer Gravitation
	Observatory (LIGO) to develop and exploit laser	Observatory (LIGO) to develop and exploit laser inter
	interferometry to measure and study gravitational waves.	to measure and study gravitational waves. 🤞
	4	¢
	We enter into this agreement in order to lay the groundwork	
	for decades of world-wide collaboration. We intend to carry out	decades of world-wide collaboration. We intend to car
		1 / 244

Revision plan of "LVK MoU"↓

Target Sensitivity & Schedule

"Scenario Paper" Living Rev Relativ (2018) 21:3 https://doi.org/10.1007/s41114-018-0012-9

[1304.0670v4]

Hisaaki Shinkai (Osaka Institute of Technology) on behalf of KAGRA collaboration; Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

[1304.0670v4]

https://dcc.ligo.org/LIGO-P1900218/public

Status of KAGRA: Summary

- Now trials with DRFPMI. Final configuration will be decided soon.
- KAGRA plans to join LV Observation Run 3 from the end of 2019.
- Towards MoA with LIGO/Virgo, the round table discussion is ongoing in this LVC meeting.

- KAGRA-LV data exchange started.
- KAGRA-LV data analysis groups meetings has started.
- ♦ KAGRA plans to join O4 from the beginning.

KAGRA appreciates the community's warm welcomes.

Sep. 4, 2019 @ LVC meeting at Warsaw, Poland

back up slides