Deep Learning Networks & Gravitational Wave Signal Recognization

He Wang (王赫)

[hewang@mail.bnu.edu.cn]

Department of Physics, Beijing Normal University

In collaboration with Zhou-Jian Cao

Aug 23rd, 2019

The 23rd KAGRA face-to-face meeting @Toyama

1

- Problems
 - Current matched filtering techniques are computationally expensive.
 - Non-Gaussian noise limits the optimality of searches.
 - Un-modelled signals?

A trigger generator \rightarrow Efficiency+ Completeness + Informative

- Solution:
 - Machine learning (deep learning)
 - • •

- Existing CNN-based approaches:
 - Daniel George & E. A. Huerta (2018)
 - Hunter Gabbard et al. (2018)
 - X. Li et al. (2018)
 - Timothy D. Gebhard et al. (2019)
- Our main contributions:
 - A brand new CNN-based architecture (MF-CNN)
 - Efficient training process (no bandpass and explicit whitening)
 - Effective search methodology (only 4~5 days on O1)
 - Fully recognized and predicted precisely (<1s) for all GW events in O1/O2

Convolutional neural network (ConvNet or CNN)

⁴⁴ Matched-filtering (cross-correlation with the templates) can be regarded as a convolutional layer with a set of predefined kernels.

Convolutional neural network (ConvNet or CNN)

Matched-filtering (cross-correlation with the templates) can be regarded as a convolutional layer with a set of predefined kernels.

• In practice, we use matched filters as an essential component in the first part of CNN for GW detection.

Architechture

Architechture

(relative to the input) of feature response of matching by recording the location of the maxima value corresponding to the **optimal template** C_0

(In preprint)

• We use **SEOBNRE** model [Cao et al. (2017)] to generate waveform, we only consider **circular**, **spinless** binary black holes.

	template	waveform (train/test)
Number	35	1610
Length (s)	1	5
	equal mass	

 The background noises for training/testing are sampled from a closed set (33x4096s) in the first observation run (O1) in the absence of the segments (4096s) containing the first 3 GW events.

(In preprint)

• We use **SEOBNRE** model [Cao et al. (2017)] to generate waveform, we only consider **circular**, **spinless** binary black holes.

	(train/test)	
35	1610	
1	5	
equal mass		1.0
	35 1 equal mass	(train/test)35161015equal mass

- The background noises for training/testing are sampled from a closed set (33x4096s) in the first observation run (O1) in the absence of the segments (4096s) containing the first 3 GW events.
- Mass distribution of dataset / templates / events GW170817 Training data GW151012 GW170729 Testing data GW151226 GW170809 GW170818 GW170823 Templates GW170814 GW170104 GW150914 GW170608 0.6 0.4 0.2 20 40 60 80 100 120 140 0 $m_1 + m_2(M_{\odot})$

Search methodology

- Every 5 seconds segment as input of our MF-CNN with a step size of 1 second.
- The model can scan the whole range of the input segment and output a probability score.
- In the ideal case, with a GW signal hiding in somewhere, there should be **5** adjacent predictions for it with respect to a threshold.

Search methodology

- Every 5 seconds segment as input of our MF-CNN with a step size of 1 second.
- The model can scan the whole range of the input segment and output a probability score.
- In the ideal case, with a GW signal hiding in somewhere, there should be **5** adjacent predictions for it with respect to a threshold.

Population property on O1

(In progress)

- Sensitivity estimation
 - Background: using time-shifting on the closed set from real LIGO recordings in O1
 - Injection: random simulated waveforms

- Statistical significance on O1
 - Count a group of adjacent predictions as one "trigger block".
 - For pure background (non-Gaussian), monotone trend should be observed.
 - In the ideal case, with a GW signal hiding in somewhere, there should be
 5 adjacent predictions for it with respect to a threshold.

1.00 0.98 Detection ratio 0.96 0.94 Threshold=0.1 Threshold=0.3 0.92 Threshold=0.5 Threshold=0.7 0.90 Threshold=0.9 0.02 0.04 0.06 0.08 0.10 Sensitivity depths (SNR) 10^{0} Background 01 ± 1 std. dev. 10^{-1} 10^{-2} Density 10-3 10^{-4} 3 20 4 5 6 7 8 9 10 30 492

Number of Adjacent prediction Nadj

Population property on O1

(In progress)

- Sensitivity estimation
 - Background: using time-shifting on the closed set from real LIGO recordings in O1
 - Injection: random simulated waveforms

- Statistical significance on O1
 - Count a group of adjacent predictions as one "trigger block".
 - For pure background (non-Gaussian), monotone trend should be observed.

Density

 In the ideal case, with a GW signal hiding in somewhere, there should be
5 adjacent predictions for it with respect to a threshold.

1.00 0.98 Detection ratio 0.96 0.94 Threshold=0.1 Threshold=0.3 0.92 Threshold=0.5 Threshold=0.7 0.90 Threshold=0.9 0.02 0.04 0.06 0.08 0.10 Sensitivity depths (SNR) 10^{0} Background 01 ± 1 std. dev. 10^{-1} a bump at 5 adjacent 10^{-2} predictions 10-3 10^{-4} 3 20 4 5 6 7 8 9 10 30 ⁴¶3 Number of Adjacent prediction Nadj

(In preprint)

(In preprint)

Summary

- Some benefits from MF-CNN architechure
 - Simple configuration for GW data generation
 - Almost no data pre-processing
 - Works on non-stationary background
 - Easy parallel deployments, multiple detectors can be benefit a lot from this design
 - More templates / smaller steps for searching can improve further
- Main understanding of the algorithms:
 - GW templates are used as likely features for matching
 - Generalization of both matched-filtering and neural networks
 - Matched-filtering can be rewritten as convolutional neural layers

Summary

- Some benefits from MF-CNN architechure
 - Simple configuration for GW data generation
 - Almost no data pre-processing
 - Works on non-stationary background
 - Easy parallel deployments, multiple detectors can be benefit a lot from this design
 - More templates / smaller steps for searching can improve further
- Main understanding of the algorithms:
 - GW templates are used as likely features for matching
 - Generalization of both matched-filtering and neural networks
 - Matched-filtering can be rewritten as convolutional neural layers

Thank you for your attention!