JGW-T1910359

June 21, 2019

ASC simulations for O3 SRM transmission, SRC Gouy phase shift, and ITM transmission asymmetry

Yuta Michimura

Department of Physics, University of Tokyo

Scope

- Shot noise coupling from ASC has been calculated with Optickle and reported in Y. Aso et al, <u>PRD 88, 043007 (2013)</u>
- We want to see the effect of
 - T_SRM = 30% (for O3 low power operation)
 - SRC Gouy phase shift (from nominal one-way 17.5 deg to measured 24 deg; see <u>klog #9246</u>)
 ITM transmission asymmetry (<u>JGW-T1910352</u>) to ASC shot noise
- Optickle simulations were done using codes in https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/mif/ASC-Optickle

Configurations

- Nominal BRSE at the time of <u>Aso 2013</u> (PRM input power 77.5 W), but with T_PRM = 10.35% (see <u>JGW-L1605744</u>)
- Nominal BRSE with updated PRM input power to 65 W (670 W at BS)
- BRSE with T_SRM=30%, PRM input power 1 W (O3 SRM transmission, 10 W at BS)
- BRSE with T_SRM=30%, PRM input power 1 W, SRC one-way Gouy phase 48deg/2 (by changing SR2-SR3 length by +4 cm)
- BRSE with T_SRM=30%, PRM input power 1 W, SRC one-way Gouy phase 48deg/2, T_ITMX=0.444%, T_ITMY=0.479%
 3

Methods

- Method based on <u>JGW-G1301664</u>
- ASC shot noise is calculated with Optickle
- For ASC open loop transfer functions, UGF of 3 Hz for TMs and 1 Hz for other mirrors are assumed (could be too optimistic for O3)
- For DARM coupling, DisplacementNoiseCouplingFF.dat (available from the link below) calculated with nominal configuration was used for all the interferometer configurations for simplicity https://granite.phys.s.u-tokyo.ac.jp/svn/LCGT/trunk/ mif/doc/DesignDocument/data/DisplacementNoise/BRSE/ DisplacementNoiseCouplingFF.dat

ASC Loops and Displacement Noise Coupling

WFS Sensing Matrix [W/mrad]

phases at POP A:-8.0, POP B:-76.4 REFL A:13.3, REFL B:-88.4, AS A:6.7, AS B:-83.7, TR A:

	00	011	00		ЪО	110	1112	1 1 1 1 1 1	0110	01.2	
TRX _A DC	-9.22	0.40	-9.22	0.38	0.00	-0.01	-0.00	-0.00	0.00	0.00	0.00
REFL _A 2I.	-11.01	36.58	-0.13	0.22	0.61	2.49	0.41	9.69	-0.00	-0.00	-0.00
TRY _A DC	-9.22	0.40	9.22	-0.38	-0.01	-0.01	-0.00	-0.00	-0.00	-0.00	-0.00
AS _A 1Q	0.21	-0.21	6.86	25.69	0.11	-0.17	-0.02	-0.01	-0.28	-0.03	-0.01
POP _A 1Q	-0.02	-0.00	0.35	-0.36	0.25	-0.02	-0.00	-0.00	-0.01	-0.00	-0.00
POP _A 2Q	-1.53	0.73	-0.00	0.00	0.98	2.83	0.35	0.17	-0.00	-0.00	-0.00
POP _B DC	-0.17	-0.02	0.00	0.00	-0.12	-0.30	-2.08	-1.02	0.01	0.00	0.00
$REFL_BDC$	-3.43	-2.42	-0.01	0.04	1.35	4.38	0.55	7.93	0.24	0.03	0.02
POP _B 1I	-1.93	-0.68	0.00	-0.00	-0.46	-2.40	-0.29	-0.15	-1.07	-0.13	-0.07
AS _B DC	-0.01	0.00	-0.10	-0.05	-0.06	-0.00	-0.00	-0.00	0.02	0.00	-0.04

Nominal BRSE 2013

Nominal BRSE with PRM input 67 W

WFS Sensing Matrix [W/mrad]

phases at POP A:-8.0, POP B:-76.4 REFL A:13.3, REFL B:-88.4, AS A:6.7, AS B:-83.7, TR A

	CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
TRX _A DC	-9.22	0.40	-9.22	0.38	0.00	-0.01	-0.00	-0.00	0.00	0.00	0.00
REFL _A 2I.	11.01	36.58	-0.13	0.22	0.61	2.49	0.41	9.69	-0.00	-0.00	-0.00
TRY _A DC	-9.22	0.40	9.22	-0.38	-0.01	-0.01	-0.00	-0.00	-0.00	-0.00	-0.00
AS _A 1Q	0.17	-0.17	5.75	21.54	0.09	-0.14	-0.02	-0.01	-0.23	-0.03	-0.01
POP _A 1Q	0.02	-0.00	0.35	-0.36	0.25	-0.02	-0.00	-0.00	-0.01	-0.00	-0.00
POP _A 2Q	-1.53	0.73	-0.00	0.00	0.98	2.83	0.35	0.17	-0.00	-0.00	-0.00
POP _B DC	0.17	-0.02	0.00	0.00	-0.12	-0.30	-2.08	-1.02	0.01	0.00	0.00
$REFL_BDC$	-3.43	-2.42	-0.01	0.04	1.35	4.38	0.55	7.93	0.24	0.03	0.02
POP _B 1I	-1.93	-0.68	0.00	-0.00	-0.46	-2.40	-0.29	-0.15	-1.07	-0.13	-0.07
AS _B DC	-0.00	0.00	-0.08	-0.04	-0.05	-0.00	-0.00	-0.00	0.01	0.00	-0.03

Input power change do not change ASC shot noise much since power on QPD is limited to 50 mW anyway

WFS Sensing Matrix [W/mrad]

phases at POP A:-8.0, POP B:-76.4 REFL A:13.3, REFL B:-88.4, AS A:6.7, AS B:-83.7, TR A:

	CS	СН	DS	DH	BS	PR3	PR2	PRM	SR3	SR2	SRM
TRX _A DC	-4.57	0.20	-4.57	0.19	0.00	-0.00	-0.00	-0.00	0.00	0.00	0.00
REFL _A 2I	-0.59	-1.97	-0.01	0.01	0.03	0.13	0.02	0.52	0.00	0.00	0.00
TRY _A DC	-4.57	0.20	4.57	-0.19	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
AS _A 1Q	0.00	-0.00	0.12	0.47	0.00	-0.00	-0.00	-0.00	-0.01	-0.00	-0.00
POP _A 1Q	-0.00	-0.00	0.01	-0.01	0.01	-0.00	-0.00	-0.00	-0.00	-0.00	-0.00
POP _A 2Q	-0.07	0.03	-0.00	0.00	0.05	0.14	0.02	0.01	-0.00	-0.00	-0.00
POP _B DC	0.01	-0.00	0.00	0.00	-0.01	-0.02	-0.10	-0.05	0.00	0.00	0.00
REFL _B DC	-0.14	-0.18	-0.00	0.00	0.06	0.16	0.02	0.40	-0.01	-0.00	-0.00
POP _B 1I	0.06	-0.02	0.00	-0.00	-0.01	-0.08	-0.01	-0.00	-0.03	-0.00	-0.00
AS_DC	-0.00	0.00	-0.01	-0.02	-0.00	0.00	0.00	0.00	0.00	0.00	-0.00

No attenuation before QPDs since input power is low (thus shot noise is much worse)

BRSE with

 $T_SRM = 30\%$

PRM input 1W

Gouy phase and demod phase re-tuning not done

OK for O3

~10% increase of shot noise probably due to slight mis-tuning of Gouy phase and demod phase

OK for O3

BRSE with T_SRM = 30% PRM input 1W SRC 24 deg_0-17 ITM asym 10-18

~50% increase of shot noise due to larger degeneracy between CH and PRM/PR3

REFL A and B Gouy phases retuned

OK for O3

CS CH

AS₄1Q 0.00 -0.00 0.10

POP 1Q 0.00 -0.00 0.02

AS_BDC =0.00 0.00 -0.00 0.00

0.20

TRX_DC -4.6

REFL_21 =0.18

TRY_DC -4.35 0.19

WFS Sensing Matrix [W/mrad] / phases at POP A:-8.0, POP B:-76.4 REFL A:4.1, REFL B:83.6, AS A:6.7, AS B:-83.7

0.68 0.00 0.00 -0.00 0.00 0.00 0.47

POP₄2Q =0.08 0.04 -0.00 0.00 0.05 0.14 0.02 0.01 -0.00 -0.00

 POP_BDC
 0.01
 -0.00
 0.00
 -0.00
 -0.01
 -0.02
 -0.11
 -0.06
 0.00
 0.00
 0.00

 REFL_BDC
 -0.00
 -1.43
 0.02
 -0.03
 -0.21
 -0.64
 -0.07
 -1.02
 0.03
 0.00
 0.00

 POP_B11
 -0.06
 -0.02
 0.00
 -0.00
 -0.07
 -0.01
 -0.00
 -0.00
 -0.00

0.37

DS DH BS PR3 PR2 PRM SR3 SR2 SRM

-0.18-0.00-0.01-0.00-0.00-0.00-0.00

0.20 0.00 -0.01 -0.00 -0.00 0.00 0.00 0.00

0.00 -0.00 -0.00 -0.00 -0.00 -0.00

-0.02 0.01 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

-0.00 0.00 0.00 -0.00 0.00 0.00

0.00 0.00

0.00

Conclusions

- O3 SRM transmission, SRC Gouy phase shift, ITM transmission asymmetry seems to be OK for O3
- ITM transmission asymmetry is troublesome since it creates larger degeneracy between CH mode and PRC modes
- More study necessary including the effect of ITM inhomogeneity