
Polarization issue in PRC

Matteo Leonardi Koji Nagano Yuta Michimura

The Situation

 ITM reflection has some p-pol, while forward beam is almost purely s-pol

4.6 % p-pol from ITMY single bounce [klog #9314]

ITM Birefringence

 Vendor measured transmission wavefront error (TWE) with circular polarization, but TWE measured with s-pol was different

	specification	vendor report	measured
ITMX	< 6nm	3.47	25.9nm
ITMY	< 6nm	4.07	30.1nm

Table 6. figure error of TWE at 140mm aperture

- This suggests that ITM has some birefringence
- Optical path length difference between two polarizations $\Delta l_{
 m b}$ gives phase difference of

$$\alpha = 2\pi\Delta l_{\rm b}/\lambda$$

ITM Birefringence

- If we treat RMS linearly, $\Delta l_{\rm b}$ can be written as $\Delta l_{\rm b} = l_{\rm o} l_{\rm e'} = 2l_{\rm u} 2l_{\rm e'}$ where $l_{\rm e'}$ are the optical path length measured with
 - where $l_{\rm u/o/e'}$ are the optical path length measured with circular polarization (~5 nm RMS by vendor) and polarization aligned with o/e' axes (~30 nm RMS by Caltech)
- Maximum power loss due to s-pol turning into p-pol is $\rho=(1-\cos2\alpha)/2\simeq\alpha^2$ (2 for round-trip in ITM)
- The power loss will be 7.0% for X and 9.5% for Y
- This corresponds to the power ratio at POP
 (p/(s+p)) of 10.8 % for X and 4.0 % for Y (note that BS reflectivity is different between polarizations) * corrected on June 30
- This seems to (amazingly) agree with the measurement (9.4% for X and 4.8% for Y)

Implications

- We need both uniform $l_{
 m s}$ and small $\Delta l_{
 m b}$ but this cannot be achieved by surface corrections
- Using ordinary and extraordinary refractive indices,

$$\Delta l_{
m b}$$
 can be written as For sapphire @ 1064 nm $\Delta l_{
m b}=dn_o(n_o^2-n_e^2)\theta^2/(2n_e^2)$ $n_e=1.747$ where $heta$ is angle between c-axis and beam axis, JGW-T0400030

and d is ITM thickness (15cm)

Note that they are different in cryogenic temperatures and there might be additional birefringence due to stress or something

If we require loss to be smaller than a threshold,

$$\Delta l_{\rm b} < \sqrt{\lambda^2 \rho_{\rm th}/(2\pi)^2}$$
 $\theta < \sqrt{\frac{2n_e^2 \sqrt{\lambda^2 \rho_{\rm th}/(2\pi)^2}}{dn_o(n_o^2 - n_e^2)}}$

For 10% (1000ppm) loss, these will be 54 nm (5.4 nm) and 0.41 deg (0.13 deg)

Other Possibilities

 The shape of p-pol beams from ITMX and ITMY seems similar which implies common p-pol

generation? [klog #9329] Common stress due to suspension?

- Beam height changes could create p-pol beam? (we have 1/300 inclination)
- Beam clipping creates p-pol beam somehow?
- Birefringence in ITM coating? (might be able to check by measuring the amount of p-pol at room temperature) 6

Sapphire Axes

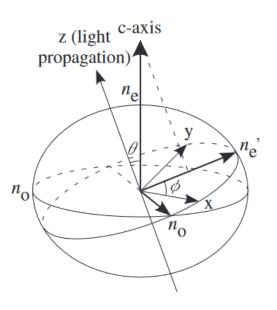
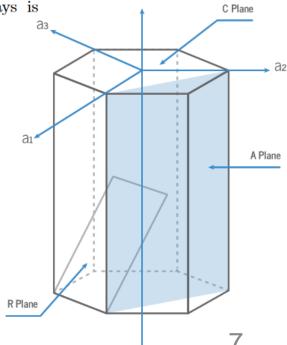



Figure 1. If the c-axis of the sapphire sample inclines by an angle θ from the z-axis, the phase speed of light propagating along the z-axis depends on the direction of its electric field vector \mathbf{E} . The phase speed of a beam whose electric field is parallel to the projection of the c-axis onto the xy-plane, which inclines by an angle ϕ from the x-axis, is $c/n'_{\rm e}$ and the phase speed of a beam whose electric field is perpendicular to the direction is $c/n_{\rm o}$. The phase retardation between these two rays is given by Eq. 2.

Tokunari+, <u>JPCS 32, 432 (2006)</u>

Typical Orientation

C Axis

http://jp.rubicontechnology.com/company/sapphire

Calculation Details

Phase difference between o-axis and e'-axis

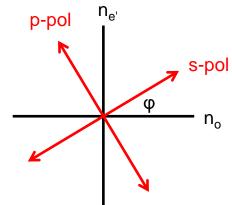
$$\alpha = 2\pi d(n_o - n_{e'})/\lambda$$

p-pol power after ITM reflection

$$P_p/P_{
m in} = (1-\cos^22\phi)(1-\cos2lpha)/2$$
 $\leq (1-\cos2lpha)/2$ s-pol power dependence $\leq (2\alpha)/2$ Maximum s-pol power dependence $\simeq lpha^2$

 $-\cos 2\alpha)/2$ s-pol power depends on α Maximum s-pol power: Pin Minimum s-pol power: Pin*cos^2(2 ϕ)

beam


propagation

Transmission wavefront error

$$d(n_o - n_{e'}) = 2(\underline{d(n_o + n_{e'})/2} - \underline{dn_{e'}})$$

Measured with circular polarization, and this is minimized by polishing

Not directly measured. RMS measured with s-pol shows small dependence on mirror orientation, and this suggests dn_e, map is similar to dn_o map in RMS

c-axis (n_e)

polarization

 θ < 0.2 deg (<u>JGW-T1809173</u>) But ϕ is totally unknown