ISC meeting

June 25, 2019

Polarization issue in PRC

Matteo Leonardi Yuta Michimura

The Situation

 ITM reflection has some p-pol, while forward beam is almost purely s-pol

ITM Birefringence

 Vendor measured transmission wavefront error (TWE) with circular polarization, but TWE measured with s-pol was different

	specification	vendor report	measured
ITMX	< 6nm	3.47	25.9nm
ITMY	< 6nm	4.07	30.1nm

Table 6. figure error of TWE at 140mm aperture

- This suggests that ITM has some birefringence
- Optical path length difference between two polarizations $\Delta l_{\rm b}$ gives polarization rotation of $\phi=\pi\Delta l_{\rm b}/\lambda$

ITM Birefringence

- If we treat RMS linearly, $\Delta l_{\rm b}$ can be written as $\Delta l_{\rm b} = l_{\rm p} l_{\rm s} = 2l_{\rm u} 2l_{\rm s}$ where $l_{\rm u/s/p}$ are the optical path length measured with circular polarization and s/p polarization
- The power loss due to s-pol turning into p-pol is therefore written as

 $ho = 1 - \cos^2 2 \phi$ (2 for double pass inside ITM substrate)

4

- The power loss will be 6.8% for X and 9.2% for Y
- This corresponds to the power ratio at POP (p/(s+p)) of 9.3 % for X and 5.7 % for Y (note that BS reflectivity is different between polarizations)
- This seems to (amazingly) agree with the measurement (9.4% for X and 4.8% for Y)

Implications

- We need both uniform $l_{\rm s}$ and small $\Delta l_{\rm b}$ but this cannot be achieved by surface corrections
- Using ordinary and extraordinary refractive indices, $\Delta l_{\rm b}$ can be written as $\Delta l_{\rm b} = dn_o(n_o^2 - n_e^2)\theta^2/n_e^2$ where θ is angle between c-axis and beam axis, JGW-T0400030 and d is ITM thickness (15cm) For sapphire @ 1064 nm $n_e = 1.747$ $n_o = 1.754$
- If we require loss to be smaller than a threshold,

$$\Delta l_{\rm b} < \sqrt{\lambda^2 \rho_{\rm th}/(2\pi)^2}$$
$$\theta < \sqrt{\frac{n_e^2 \sqrt{\lambda^2 \rho_{\rm th}/(2\pi)^2}}{dn_o(n_o^2 - n_e^2)}}$$

For 100ppm loss, these will be 5 nm and 0.09 deg

Other Possibilities

 The shape of p-pol beams from ITMX and ITMY seems similar which implies common p-pol generation? [klog #9329]

 Beam height changes could create p-pol beam? (we have 1/300 inclination)