Status of Frequency Dependent Squeezing Experiment at TAMA

K. Arai, Y. Aso, M. Barsuglia, E. Capocasa, E. Polini, M. Eisenmann, R. Flaminio, Y. Guo, M. Leonardi, H. Lueck, M. Marchiò, L. Pinard, P. Prat, R. Schnabel, E. Schreiber, K. Somiya, M. Tacca, R. Takahashi, D. Tatsumi, A. Tomura, M. Vardaro, H. Vahlbruch, C. Wu, S. Wu, <u>Yuhang Zhao</u>

SOKENDAI(The Graduate University of Advanced Studies)/NAOJ

Content

- Frequency dependent squeezing for GW detector
- Construction of squeezer and measurement of squeezing
- Matching of squeezer and filter cavity
- Summary and future plan

Design sensitivity of current gravitational wave detectors

Quantum noise is limiting all the 2nd generation gravitational wave detectors' design sensitivity

Broadband quantum noise reduction will allow for major improvements

Radiation pressure noise:

Amplitude quadrature fluctuation of laser beam shakes mirrors differentially

N D

Α

Shot noise:

Phase quadrature fluctuation of interferometer output laser beam

Applying frequency independent phase squeezing

Radiation pressure noise:

Amplitude quadrature fluctuation of laser beam shakes mirrors differentially

Shot noise:

Phase quadrature fluctuation of interferometer output laser beam

Applying frequency independent phase squeezing

Radiation pressure noise:

Amplitude quadrature fluctuation of laser beam shakes mirrors differentially

Shot noise:

Phase quadrature fluctuation of interferometer output laser beam

Applying frequency independent phase squeezing

Radiation pressure noise:

Amplitude quadrature fluctuation of laser beam shakes mirrors differentially

Shot noise:

Phase quadrature fluctuation of interferometer output laser beam

Applying frequency independent phase squeezing

Radiation pressure noise:

Amplitude quadrature fluctuation of laser beam shakes mirrors differentially

Shot noise:

Phase quadrature fluctuation of interferometer output laser beam

Squeezing implemented into GW detectors

Frequency independent squeezing (FIS) has been implemented in the second observation run which started this April.

When quantum noise will limit the entire detection bandwidth, a strategy for the broadband quantum noise reduction will be mandatory

Squeezing implemented into GW detectors

Frequency independent squeezing (FIS) has been implemented in the second observation run which started this April.

When quantum noise will limit the entire detection bandwidth, a strategy for the broadband quantum noise reduction will be mandatory

Squeezing implemented into GW detectors

Frequency independent squeezing (FIS) has been implemented in the second observation run which started this April.

When quantum noise will limit the entire detection bandwidth, a strategy for the broadband quantum noise reduction will be mandatory

Broadband Quantum noise reduction

For optimal quantum noise reduction, the squeezing ellipse angle needs to be optimized for each frequency

2019.06.21-23

Frequency dependent squeezing can be achieved by reflecting frequency independent squeezing off a detuned optical cavity

Reports, 684, 1-51. 2017.

Frequency dependent squeezing project overview

funded by JSPS (Scientific Research A 15H02095, P.I. R. Flaminio and Scientific Research B, 18H01235, P.I. M. Leonardi)

Goal: Full scale filter cavity prototype to demonstrate frequency dependent squeezing with rotation around 70Hz.

Key features:

- Cavity length: 300m
- Finesse: 4400 @1064nm
- Storage time: 2.8ms @1064nm
- Losses (round trip): 80ppm

- The experiment is using TAMA facility
- Squeezed vacuum source is in air
- The injection telescope and filter cavity are in vacuum and suspended by TAMA suspension

Content

- Frequency dependent squeezing for GW detector
- Construction of squeezer and measurement of squeezing
- Matching of squeezer and filter cavity
- Summary and future plan

Construction of Frequency Independent squeezed source

Squeezer construction was finished recently (commissioning is on going)

Squeezing measurement timeline

Detection of squeezing

anti-squeezing and squeezing generated inside squeezer should be the same

What is the limiting factor?

Characterization of environmental noise sources

- Work done in collaboration with F. Paoletti and I. Fiori from EGO
- Accelerometers and microphones used to characterized the seismic and acoustic noise sources
- Mechanical resonances of many components have been characterized

The limiting factor for squeezing

Optical losses: not limiting

- Optical losses from OPO to homodyne: < 1%
- Homodyne visibility: > 99%
- Photodiode quantum efficiency: >99%
- No clipping on Homodyne

Phase noise: limiting

- Residual phase noise from coherent control loop is ~230mrad
- This level of phase noise will degrade squeezing from ~15dB to ~5dB

KIW6 @ Wuhan 2019.06.21-23

0.100

0.125 0.150 0.175

0.200

time(s)

0.225 0.250

0.275

Content

- Frequency dependent squeezing for GW detector
- Construction of squeezer and measurement of squeezing
- Matching of squeezer and filter cavity
- Summary and future plan

Filter cavity status

- Cavity controlled using an auxiliary green beam
- AOM used to tune the co-resonant condition between green and IR beam (squeezed)
- Round trip losses measured: between 45 and 85 ppm

Measurement of optical losses in a high-finesse 300 m filter cavity for broadband quantum noise reduction in gravitational-wave detectors

Eleonora Capocasa,^{1,2,*} Yuefan Guo,³ Marc Eisenmann,⁴ Yuhang Zhao,^{1,5} Akihiro Tomura,⁶ Koji Arai,⁷ Yoichi Aso,¹ Manuel Marchiò,¹ Laurent Pinard,⁸ Pierre Prat,² Kentaro Somiya,⁹ Roman Schnabel,¹⁰ Matteo Tacca,¹¹ Ryutaro Takahashi,¹ Daisuke Tatsumi,¹ Matteo Leonardi,¹ Matteo Barsuglia,² and Raffaele Flaminio^{4,1}

Alignment and match between squeezer and filter cavity

- Robust telescope designed using large focal length lenses
- IR probe beam (co-aligned with squeezing) amplified inside OPO
- Matching and alignment optimization on going

Content

- Frequency dependent squeezing for GW detector
- Construction of squeezer and measurement of squeezing
- Matching of squeezer and filter cavity
- Summary and future plan

Summary

- Frequency independent squeezing measured: 5.5dB down to ~50Hz
- Filter cavity assembled, controlled, characterize and matched with squeezer

Future plan

- Reduce phase noise which is currently limiting squeezing performances
- Optimize squeezer's matching into filter cavity
- Test of a novel locking scheme for the filer cavity
- Inject frequency independent squeezing into the filter cavity

Collaborations

Emil Schreiber GEO600/AEI

Shu-Rong Wu Tsing Hua University

Marco Vardaro ity Padova University

Matteo Barsuglia APC/CNRS

Eleonora Polini La Sapienza Roma

Matteo Tacca

Nikhef

Federico Paoletti INFN-Pisa

Marc Eisenmann LAPP/CNRS

Yuefan Guo Nikhef

Chien-Ming Wu Tsing Hua University

Pierre Prat APC/CNRS

Marco Banzan Padova University

Irene Fiori EGO

A lot of help from our collaborators!

Thank you!

Back-up slides

Characterization of seismic noise and acoustic noise

- Optical bench resonance: 13.5Hz(horizontal) and 45Hz(vertical)
- Mirror mount resonance: 468Hz(horizontal) and 1212Hz, 1748Hz(vertical)
- Homodyne resonance: 132Hz, 281Hz, 393Hz and 508Hz
- Moving peaks: 26.75Hz(on/off), 34-37Hz(moving back and forth)
- Rotary pump: 24.75Hz Turbo pump: 604Hz

Ε

Observatory of Japan

2019.06.21-23

Squeezing measurement scheme

- 1. Pump beam is used to generate the squeezed vacuum source
- 2. AUX1 and AUX2 are used to provide control signal so that OPO can be stabilized
- 3. Homodyne is used to detect squeezing

Parametric (de)amplification measurement

To characterize the optical parametric oscillator (OPO) non-linear gain, the classical parametric amplification and de-amplification gain was measured

To produce squeezed vacuum, the OPO is operated below threshold. The measured threshold is ~80mW, which is close to the expected value (76mW)

