VIBRATION ISOLATION SYSTEM for the **Cryogenic test masses** IN **KAGRA**

Koki Okutomi Institute for Cosmic Ray Research, University of Tokyo (JAPAN)

CONTENTS

Vibration isolation systems in KAGRA

Type-A suspension

Topics of the suspension control

WHERE ARE WE?

OFFICE

ENTRANCE

Google

KAGRA FEATURES

Smaller seismic noise ~ 1-2 orders of magnitude in ~1-100 Hz

Smaller thermal noise Many potential benefits

SENSITIVITY

SEISMIC NOISE

VIBRATION SOLATION SYSTEMS

COMPONENTS

TYPE-A	TYPE- B	TYPE- BP
9 stages	5 stages	3 stages
Inverted Pendulum	Inverted Pendulum	
GAS Filter x5	GAS Filter x3	GAS Filter x2
Payload: Cryogenic	Room-temperature	Room-temperature
For 4 TMs	For BS and 3 SRs	For 3 PRs

PERFORMANCE

DEGREES OF FREEDOM

Vertical-to-Longitudinal COUPLING

1/300

(Longitudinal)

(Vertical)

 $\sim 1\%$

Vertical-to-Longitudinal COUPLING

TYPE-A SUSPENSION

TYPE-A SUSPENSION

TOWER

PRE-ISOLATION STAGE

Inverted pendulum legs

Horizontal resonance ~ 70 mHz

MECHANICAL FILTER CHAIN

5 geometric anti-springs

Vertical resonance ~ 300 mHz

PRE-ISOLATOR

BOTTOM FILTER

CRYOGENIC PAYLOAD

RADIATION + **C**ONDUCTIVE **COOLING**

- Black coated surface
- Pure aluminum heat links

SAPPHIRE TEST MASS & FIBERS

- Weight: 22.5 kg (ears included)
- Hydro-catalysis bonding

CRYOGENIC PAYLOAD

SIN

SILE

©KAGRA Collaboration / Rey. Hori

CRYOGENIC PAYLOAD

PAYLOAD COMPONENTS

PAYLOAD STRUCTURE

PAYLOAD STRUCTURE

HEAT LINK

cf. T. Yamada Master Thesis (2018)

HEAT LINK INDUCES VIBRATION

HEAT LINK VIBRATION SOLATION SYSTEM

HEAT LINK VIBRATION SOLATION SYSTEM

HL-VIS DESIGN PERFORMANCE

by T. Yamada

SUSPENSION'S ROLL

Seismic noise attenuation

RMS reduction

CONTROL SCHEMATICS

LOCAL SENSORS - TOWER

LOCAL ACTUATORS - TOWER

LOCAL SENSORS - PAYLOAD

LOCAL ACTUATORS - PAYLOAD

OSEM-type actuator MN-MNR relative force

IM

TM

OSEM-type actuator IM-IRM relative force

OSEM-type actuator TM-RM relative force

Torsion mode damping

TOPICS OF THE SUSPENSION CONTROL

Modal damping of the GAS vertical chain

Hierarchical control

TORSION MODE DAMPING

Requirements

- Yaw RMS at TM < 0.88 urad
 - Mode decay time < 60 sec.

BF DAMPER

LVDT + Coil-magnet actuator unit

6 DoFs sensing & actuation w.r.t. the ground

DAMPING LOOP

DECAY TIME MEASUREMENT

MODE	DECAY TIME
#1	961.4 sec.
#2	158.6 sec.
#3	1155.5 sec.

DECAY TIME MEASUREMENT

MODE	DAMPED DECAY TIME
#1	24.8 sec.
#2	43.9 sec.
#3	9.5 sec.

YAW MODE DAMPING

YAW MODE DAMPING

Torsion mode damping

TOPICS OF THE SUSPENSION CONTROL

Modal damping of the GAS vertical chain

Hierarchical control

MODAL DAMPING

Decouples sensor signals into modal amplitudes

VERTICAL MODES

GAS FILTER RESPONSE (1)

MODEL PREDICTION

GAS FILTER RESPONSE (2)

MEASUREMENT RESULT

Modal responses make filter design simple

MODAL SPECTRUM

MEASUREMENT RESULT

UNDAMPED

1ST & 2ND MODE DAMPED

TOPICS OF THE SUSPENSION CONTROL

Torsion mode damping

Modal damping of the GAS vertical chain

Hierarchical control

HIERARCHICAL CONTROL

FOR THE FIRST MASS LOCK

SUSPENSION RESPONSE

LOOP DESIGN

X-arm: frequency reference, Y-arm: mass lock loop

CURRENT PROGRESS

Hierarchical filters for the suspension actuator have been designed to achieve the mass lock

MANY TO-DO

Sensor & actuator diagonalization

Inertial damping

- Decay time measurements
 - Automation of the control transition (Guardian)
- Control loop optimization etc...

SUMMARY

Type-A suspension

All the 4 suspensions are cooled down and under commissioning.

Measurements

Characterization and local control are challenging but exciting.

Commissioning work is ongoing toward O3

