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Abstract

We apply the independent component analysis (ICA) to the real data from a
gravitational wave detector for the first time. Specifically we use the iKAGRA data
taken in April 2016, and calculate the correlations between the gravitational wave
strain channel and 35 physical environmental channels. Using a couple of seismic
channels which are found to be strongly correlated with the strain, we perform ICA.
Injecting a sinusoidal continuous signal in the strain channel, we find that ICA
recovers correct parameters with enhanced signal-to-noise ratio, which demonstrates
usefulness of this method. Among the two implementations of ICA used here, we find
the correlation method yields the optimal result for the case environmental noises
act on the strain channel linearly.
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1 Introduction

Ever since Einstein found the existence of a gravitational wave solution in his theory
of general relativity in 1916, it took exactly a century for mankind to succeed in its
direct detection. This delay is primarily due to the fact that the gravitational force is an
exceedingly weak force compared with other interactions.

The first detection of a gravitational wave by the advanced Laser Interferometer Grav-
itational wave Observatory (aLIGO) [1] brought a great impact on science and told the
beginning of gravitational wave astronomy. Following aLIGO and advanced Virgo, the
large-scale cryogenic gravitational wave telescope (LCGT) now known as KAGRA, has
been constructed in Kamioka, Japan [2]. KAGRA will play very important roles in the
international network of gravitational wave detection by measuring the number of polariza-
tion property, which is indispensable to prove the general relativity [3], and by improving
the sky localization of each event significantly [4]. As the first underground and cryogenic
detector, it will also provide important information to the third-generation detectors.

Because gravity is the weakest force among the four elementary interactions, gravita-
tional waves have high penetrating power. Therefore, they enable us to see deep inside
dense matter, such as neutron stars, and bring information that electromagnetic waves
cannot. On the other hand, this property makes its detection very difficult. It is very
important to develop methods for extraction of these tiny signals. There are a number
of methods of signal extraction which extract signal out of large noises such as matched
filtering [5], which yields an optimal result if (and only if) underlying noise is Gaussian
distributed. However, the problem is not so simple, as it is known that there exist non-
Gaussian noises in real data. They decrease the performance of the analysis methods
assuming Gaussianity of the noises. What is worse, these noises may be mistaken for true
signals and increase the false alarm probability. Thus, it is necessary to deal with non-
Gaussianity properly as stressed in [6]. Characterization, mitigation, and even subtraction
of noise in gravitational wave detector outputs have been extensively studied in the lit-
erature. The standard way including pre-data conditioning (whitening, band-passing),
line-removal, and χ2 veto are well overviewed in [7]. Many of recent works demonstrate
performance of Deep Neural Networks [8, 9, 10, 11, 12, 13], but see also [14].

In this situation, independent component analysis (ICA) [15, 16, 17] occupies a unique
position among methods of signal extraction because it makes use of non-Gaussianity
of signals and noises instead of treating it an obstacle. ICA has been used in various
fields in astronomy, e.g., [18, 19, 20, 21, 22, 23, 24, 25, 26]. Namely, [18] demonstrated
ICA (EFICA and WASOBI) performance on simulated data mimicking two gravitational
wave interferometer outputs. The current paper, on the other hand, demonstrates it
using real gravitational wave strain data from the iKAGRA detector and multiple real
auxiliary channels that recorded status of the detector and used for control, commissioning,
monitoring and characterization of the detector. ICA can separate various components
obeying non-Gaussian distributions, so that it can remove (part of) non-Gaussian noises
from strain data that expresses gravitational wave signals. Then the strain channel would
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consist of the real signal and (nearly) Gaussian noises. Thus we can apply the conventional
matched filter technique more confidently. In addition, ICA can be used even in the cases
noises are nonlinearly coupled to the strain channel as demonstrated in [27].

In this paper, we use the correlation method [27] (or the Gram-Schmidt orthogonal-
ization method in the case of multiple channels in general) and FastICA [31]. The former
method has been utilized as the Wiener filtering [33, 34, 35, 36, 37] on real Caltech 40m and
LIGO data and quite remarkable success was reported recently [38] using witness sensors
including voltage monitors of analogue electronics for power main and photodiodes that
monitor beam motion and its size for beam jitter. We report the results of application of
these two different ICA methods to the iKAGRA data and discuss its usefulness in gravi-
tational wave data analysis. The paper is organized as follows. In § 2, we introduce ICA
in the simplest case where only one environmental channel is incorporated to the strain
channel and review analytic formulas of correlation method obtained in our previous paper
[27]. Then we extend this method to the case where two different environmental channels
are concerned. We also introduce FastICA which is formulated in a different way. In § 3,
we present our application of ICA to the iKAGRA data with injected artificial continuous
signal. Then we discuss the result focusing on the difference of the two methods in § 4.
We argue that for the current setup where noises measured by the environmental channels
affect the strain linearly and additively, the what we call correlation method yields the
optimal result. The final section § 5 is devoted to conclusion.

2 Independent Component Analysis (ICA)

As is seen in our previous paper [6], signal detection under non-Gaussian noises is much
more involved than the case with Gaussian noises since the optimal statistic has much
complicated forms. ICA is an attractive method of signal extraction because it makes use
of non-Gaussian nature of the signals [15, 16, 17] (see [28, 29] for textbooks). We here
introduce two methods of ICA as an approach of non-Gasussian noise subtraction.

Basically, this method assumes only statistical independence between the signal and
noises, and does not impose any other conditions on their distributions. However, a simpler
formulation can be achieved by using physical information of gravitational wave detection
as expressed in [27]. Following [27], we first formulate the subtraction of non-Gaussian
noise in the gravitational wave detection for the case where noise is coupled to the strain
linearly. Then we introduce analytic formulas of ICA for this case, which we call the
correlation method. Previously, this was two component analysis in [27], but we here
developed a multiple component version for combining different environmental channels.

On the other hand, there is a robust formulation which does not incorporate any
information of the concerned system, which is called FastICA [31]. We also introduce this
method in this section and apply it in our analysis as a comparison.

7



2.1 Removing non-Gaussian noises

In this paper, we consider the following simple problem as a first step to test applicability
of ICA for detection of GWs. Let us consider the case where we have two detector outputs,
x1(t) and x2(t) (t stands for time). The former is the output from the laser interferometer,
namely, the strain channel, and the latter is an environmental channel such as an output
of a seismograph. We wish to separate gravitational wave signal h(t) and non-Gaussian
noise k(t) using the data of tx(t) = (x1(t), x2(t)).

As the simplest case we assume that there is a linear relation between the outputs and
the sources:

x(t) =

(
x1(t)
x2(t)

)
= As(t), s(t) =

(
s1(t)
s2(t)

)
=

(
h(t) + n(t)

k(t)

)
, (1)

where A is assumed to be a time independent matrix. Since the output of a laser interfer-
ometer, of course, suffers from Gaussian noise n(t), we can regard s1(t) = h(t) + n(t) as
an original signal. Note that non-Gaussian noise k(t) can contain any Gaussian noise as
a part of it. Thus, we have not added any Gaussian noise to s2(t) explicitly.

Since the gravitational wave is so weak that it will not affect any environmental meters
such as a seismograph, one may set A as

A =

(
a11 a12
0 a22

)
. (2)

The aim of ICA is to find a linear transformation

y = Wx, (3)

such that two components of the transformed variables y are statistically independent of
each other. Here the distribution of y, py(y), is constructed from the observed distribution
function of x, px(x), through the transformation (3) as

py(y) ≡ ||W−1||px(x), (4)

where ||X|| denotes the determinant of matrix X. Thanks to the assumption (2), the
matrix W also takes a form

W =

(
w11 w12

0 w22

)
. (5)

However, since we do not know all the component of A, we attempt to determine W
to be A−1 in such a way that the components of y, y1(t) and y2(t) to be statistically
independent as much as possible. In [27] this was achieved by using the the Kullback-
Leibler divergence [30], which represents a distance in the space of statistical distribution
functionals. It is defined between two arbitrary PDFs, e.g., py(y) and q(y) as

D[py(y); q(y)] =

∫
py(y) ln

py(y)

q(y)
dy = Epy

[
ln

py(y)

q(y)

]
. (6)
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Here Epy [·] denotes an expectation value with respect to a PDF py. Then we can obtain
mutually independent variables y by minimizing a cost function Lq(W ) ≡ D[py(y); q(y)],
where q(y) = q(y1)q(y2) is an appropriately chosen distribution function.

The most proper choice of q(y) is obviously the true distribution function of indepen-
dent source variables s, r(s) = r1[s1(t)]r2[s2(t)], which is not known a priori. Because
n(t) is a Gaussian with vanishing mean in this simple setup, its statistical property is
entirely characterized by the two-point correlation function K(t− t′) = ⟨n(t)n(t′)⟩. Then
the marginal distribution function of s1(t) is given by

r1[s1(t)] =
1√
2πσ

exp

[
− 1

2σ2
(s1(t)− h(t, θ))2

]
, σ2 = K(0), (7)

where h(t, θ) is the actual waveform of gravitational radiation emitted from some source,
where θ collectively denotes parameters of the source. On the other hand, we do not
specify the PDF of k(t), r2(s2), except that it is a super-Gaussian distribution such as
a Poisson distribution with a larger tail than Gaussian. We show, however, that we can
obtain the matrix W easily for our particular problem with a21 = w21 = 0 as we see below.

2.2 Correlation method

From now on we replace the ensemble average E[·] by temporal average of observed values
of x which we denote by brackets. For the true distribution r(y), minimization of the cost
function Lr(W ) results in decorrelating y1 and y2 [27], i.e. ⟨y1(t)y2(t)⟩ = 0.

From (
y1(t)
y2(t)

)
=

(
w11 w12

0 w22

)(
x1(t)
x2(t)

)
=

(
w11x1(t) + w12x2(t)

w22x2(t)

)
, (8)

it is equivalent to requiring

⟨y1(t)x2(t)⟩ = w11⟨x1(t)x2(t)⟩+ w12⟨x2
2(t)⟩ = 0. (9)

We therefore obtain

w12 = −⟨x1x2⟩
⟨x2

2⟩
w11. (10)

Since ICA does not uniquely determine the overall factor of y by nature, this relation
suffices for our purpose to determine y1. These are what we calculated in our previous
paper [27] using the Kullback-Leibler divergence.

Here we develop a multiple component method for further analysis and we apply it in
§ 3.2.2. For three components, y(t) and x(t) becomey1(t)

y2(t)
y3(t)

 =

w11 w12 w13

0 w22 w23

0 w32 w33

x1(t)
x2(t)
x3(t)

 =

w11x1(t) + w12x2(t) + w13x3(t)
w22x2(t) + w23x3(t)
w32x2(t) + w33x3(t)

 , (11)
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and x1(t)
x2(t)
x3(t)

 =

a11 a12 a13
0 a22 a23
0 a32 a33

s1(t)
s2(t)
s3(t)

 =

a11s1(t) + a12s2(t) + a13s3(t)
a22s2(t) + a23s3(t)
a32s2(t) + a33s3(t)

 . (12)

In this case also, the minimization of cost function results in decorrelating y, ⟨y1y2⟩ =
⟨y2y3⟩ = ⟨y3y1⟩ = 0. This is achieved by the analogy of the Gram–Schmidt process which
is a method for orthonormalising a set of vectors, and it can be extended to the case where
there are more than three components.

Because of the gauge degree of freedom, we can take w32 = 0 without loss of generality
and choose

y3(t) = x̃3(t) ≡
x3(t)√
⟨x2

3⟩
. (13)

We first require ⟨y2(t)y3(t)⟩ = ⟨y2(t)x3(t)⟩ = 0. This gives following relation,

w23 = −⟨x2x3⟩
⟨x2

3⟩
w22. (14)

Based on this, we can choose

y2(t) = x̃2(t) ≡
x′
2(t)√
⟨x′2

2 ⟩
, x′

2(t) ≡ x2(t)−
⟨x2x3⟩
⟨x2

3⟩
x3(t). (15)

If we take
y1(t) = x1(t)− ⟨x1x̃2⟩x̃2(t)− ⟨x1x̃3⟩x̃3(t), (16)

⟨y1(t)y2(t)⟩ = ⟨y2(t)y3(t)⟩ = ⟨y3(t)y1(t)⟩ = 0 is satisfied. Note that Eq. (16) is sym-
metrical with respect to the permutation of x2(t) and x3(t).

Thus we can observe that the correlation method of ICA shown here is equivalent
to the instantaneous Wiener filtering1, and this is due to the particular character of our
problem that only the strain channel is sensitive to the gravitational wave signal with
ai1 = 0 (i ̸= 1) in our linear model.

2.3 FastICA method

Next, we introduce another method to obtain a matrix W called FastICA [31] which can
be easily implemented even when x(t) = As(t) has more than two components. Note
that this method can be applied to various cases of signal separation other than the case
formulated in §2.1.

In this method, assuming that each component, si(t), of source vector s(t) is properly
normalized with vanishing mean, we first apply whitening to the detector outputs x(t)
and take the dispersion of each source si(t) to be unity. This is achieved in the following

1The Wiener filtering adopted in [33, 34, 35, 36, 37] takes into account the time delay in transfer
functions. We can easily incorporate it to our analysis, too, as already demonstrated in [27].
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way. First let the normalized eigenvector and corresponding eigenvalue of a matrix ⟨x tx⟩
be ci and λi, respectively (i = 1, 2, ...), and define a matrix Γ by Γ = (c1, c2, c3, ...), and

Λ−1/2 by Λ−1/2 = diag(λ
−1/2
1 , λ

−1/2
2 , ...). Then the whitened variable x̃(t) is defined by

x̃(t) = Λ−1/2 tΓx = Λ−1/2 tΓAs ≡ Ãs, (17)

which satisfies
⟨x̃(t) tx̃(t)⟩ = ⟨Ãs t(Ãs)⟩ = Ã⟨s ts⟩tÃ = Ã tÃ = E. (18)

Here we have used the statistical independence of each component of the normalized
source term si. This means that the matrix Ã is an orthogonal matrix and that W may
be identified with tÃ for whitened output data x̃. Thus we may restrict W to be an
orthogonal matrix, too, after appropriate whitening2.

We here choose q(y) as a product of marginal distributions,

q(y) = p̃y(y) ≡
∏
i

p̃i(yi), p̃i(yi) =

∫
py(y)dy1...dyi−1dyi+1..., (19)

since py(y) = p̃y(y) is the condition for statistical independence of the variables y. Then,
the cost function defined in terms of the Kullback-Leibler divergence reads

Lp̃(W ) = D[py(y); p̃y(y)] = −H[x]− ln ||W ||+
∑
i

Hi[yi], (20)

where H[x] ≡ −
∫
dxpx(x) ln px(x) is the entropy of the distribution of x, and Hi[yi] ≡

−
∫
dyip̃i(yi) ln p̃i(yi) is the entropy of the marginal distribution of yi. When W is an

orthonormal matrix, only the last term matters to determine W . Hence minimization of
the cost function for W is achieved by minimizing entropy of the marginal distribution of
each variable. This is the spirit of the FastICA method. It has been proposed to maximize
the negentropy defined by

J [yi] ≡ H[ν]−H[yi], (21)

which is a positive semi-definite quantity, instead of the entropy itself. Here ν is a random
Gaussian variable with vanishing mean and unit variance.

In order to achieve easier implementation of the method, however, we minimize a
simpler cost function L(wi) for each row vector wi constituting the matrix W as W ≡
(w1,w2, ...). Since W is an orthogonal matrix now, we find |wi|2 = 1, so the cost function
may be defined as

L(wi) = {E[G(yi)]− E[G(ν)]}2 − β
[
|wi|2 − 1

]
, (22)

where G is an appropriate nonquadratic function and β is a Lagrange multiplier. Mini-
mization of Eq. (22) corresponds to solving the following equation:

E[x̃g(twix̃)]− βwi = 0, (23)

where g(y) = G′(y). FastICA solves for this equation starting from an arbitrary initial
choice of wi in terms of the Newton method.

2Note that this procedure is also called as sphering and has nothing to do with the whitening of strain
data in frequency domain.

11



3 Analysis of iKAGRA data

The initial engineering run of KAGRA without the cryogenic system was done in March
and April, 2016 [32]. From the results of many time series data that we analyzed, we
report those of two datasets of 224 second long. One starts from 20:15:11 UTC on April
14, 2016. The other starts from 01:01:35 UTC on April 17, 2016. For each dataset, we
calculated correlation between the strain channel and each of 35 physical environmental
monitor (PEM) channels. We found that almost all these channels in the latter (former)
data set strongly (weakly) correlated with the strain channel. We call the latter (former)
the strongly (weakly) correlated data3. The amplitude spectrum density (ASD) of the
strain channel for each data set is depicted in Fig. 1.

(a) Strongly correlated data (b) Weakly correlated data

Figure 1: ASDs of strain channels for two datasets. For the strongly correlated data, ASD
below 0.1Hz becomes much larger than that of the weakly correlated data. This means
that the strongly correlated data is contaminated by seismic noise at lower frequencies.

We chose two channels which showed large correlation with the strain channel for each
dataset. Those channels are listed in Table 1.

Table 1: Correlation between PEM channels and strain.

dataset channel correlation coefficient

strongly PEM-EX SEIS Z SENSINF OUT16 (4724ch) −0.6409
correlated PEM-EY SEIS WE SENSINF OUT16 (4823ch) 0.5892

weakly PEM-EX SEIS Z SENSINF OUT16 (4724ch) 0.3078
correlated PEM-EY SEIS NS SENSINF OUT16 (4774ch) −0.2312

3In this paper we have selected these environment channels based on the Pearson’s correlation with
the strain. Nonetheless, the Pearson’s correlation does not capture noise sources that contribute to the
strain channel data in nonlinear manners. We defer nonlinear extension of our analysis to future work.
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For both datasets, 4724ch had the largest correlation with the strain. This channel is
the output of the seismograph that observes vertical vibration installed at the end of the
X arm. Both 4774ch and 4823ch are the outputs of the seismographs installed at the end
of the Y arm, and they observe horizontal vibration orthogonal to each other.

We have made mock strain data injecting sinusoidal continuous waves

s(t) = A sin(2πft), (24)

to the strain channel and applied two methods of ICA, which were introduced in the
previous section, to this mock data and those environmental channels.

We utilized the python implementation of FastICA from scikit-learn4. We found
that results often depend on initial conditions where the Newton method is started. To
mitigate this, we parallelly generated at most thirty realizations and chose one which gives
the highest SNR.

3.1 Global performance

First, we analyze how the signal-to-noise ratio (SNR) changes before and after noise sep-
aration by ICA for mock data with varying frequencies f . We performed matched filter
(MF) analysis to both the raw mock strain data and the noise-removed data in terms
of the two methods of ICA using 4724ch as an environmental channel. For various f
of injected signal (24), we calculated SNR by applying MF with the same frequency as
the injected signal. We simultaneously plot the results against the data before and after
ICA to assess the global performance of ICA. For strongly correlated data, the results are
shown in Fig. 2.

In this dataset, strain had larger amplitude than the other dataset, and we set A =
9 × 10−10. As one can see from Fig. 2, SNRs are homogeneously enhanced by ICA for
f ≳ 0.1Hz. The correlation method enhances the SNR more than FastICA. However, there
are anomalous peaks at frequencies 0.01Hz and 0.04Hz. As shown in Fig. 1(a), even in the
absence of injection the strain channel has large amplitude at these frequencies, which is
predominantly contributed by seismic noises. We also found that their oscillation phases
are more or less stable during the time period we analyzed. Such noises are difficult to
be distinguished from our sinusoidal signal waveform and hence yield large SNR of mock
strain as shown in Fig. 2. This, however, indicates that by removing contribution of the
noises, the SNR can possibly be reduced rather than enhanced provided the injected signal
is moderate. This is actually realized in the analysis based on the correlation method as
seen in Fig. 2.

4https://scikit-learn.org/stable/
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Figure 2: SNR for varying f with and without ICA using 4724ch for the strongly correlated
dataset. The red line corresponds to the raw mock strain, while the green and blue lines
are noise-removed data using the correlation method and FastICA, respectively.

On the other hand, in the case of FastICA, the reduction of SNR is not seen. This is
solely due to our implementation, which tries to increase the SNR as much as possible as
mentioned before. In that sense, around the 0.01Hz and 0.04Hz peaks, blue line in Fig. 2
corresponds to the SNR of the separated noise.

Apart from these low frequencies contaminated by seismic noises, we find that ICA
improves SNR significantly throughout the entire frequency range with f ≳ 0.1Hz. How-
ever, based on these considerations, it is deduced that ICA works even near the peak due
to seismic noise.

For the weakly correlated data, the results are shown in Fig. 3. The amplitude of strain
at this time period is moderate, and we set A = 3×10−11. As is seen in Fig. 3, the SNR of
the data with ICA is higher than the mock data in several frequency ranges. Comparing
FastICA with the correlation method, the correlation method has fewer frequencies where
the SNR falls below that of mock data.

As for the weakly correlated data, 4774ch had the second highest correlation with
strain. If we use 4774ch instead of 4724ch as the environmental data, the result changes
as shown in Fig. 4. Compared with the case 4724ch is used (Fig. 3), the frequency region
where the SNR rises is different. As a whole the improvement of SNR is less significant,
which is a natural result considering that the correlation coefficient of 4774ch is smaller
than that of 4724ch.
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Figure 3: The same figure as in Fig. 2 but for the weakly correlated dataset.

Figure 4: Same as in Fig. 3 but using 4774ch.
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3.2 Parameter estimation for strongly correlated data

3.2.1 Two channels ICA

Next, we perform parameter estimation using the strongly correlated data to examine
whether ICA can recover correct parameters of injected signals. We injected the sinu-
soidal waveform in Eq. (24) with f = 0.125Hz and A = 1.3 × 10−9. We applied MF
analysis to search for the frequency with the highest SNR which corresponds to the max-
imum likelihood estimation of the parameter. We compare how the result of parameter
estimation changes before and after ICA and how much the SNR changes.

Figure 5 depicts the SNR before and after applying ICA.

Figure 5: Parameter estimation with fiducial frequency f=0.125Hz. Correspondence of
each line is the same as in Fig. 2.

In this case, we can see the effect of seismic noise directly. By ICA with 4724ch, SNR
at f ∼ 0.01Hz is reduced and that at the injected frequency f = 0.125Hz is successfully
enhanced. From this result, we deduce that 4724ch is highly correlated to the 0.01Hz peak.
On the other hand, the peak of 0.04Hz is still higher, which turned out to be correlated
to 4823ch which had the second largest correlation with the strain, as we will see below.

3.2.2 Multiple channels ICA

・Correlation method
As is seen § 3.1, the correlation method shows more stable performance than FastICA,
although it is much simpler. This method can be generalized to multi-channel analysis.
As a first step to multi-channel analysis, here we investigate the effectiveness of three
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components analysis, which we developed in §2.2, including two PEM channels which
strongly correlated to the strain. For this purpose we have used the mock data including
the same signal waveform as in the previous subsection, and applied the three components
correlation method to this mock data, 4724ch and 4823ch. The result is depicted in Fig. 6.
We simultaneously plotted the results of two-component analysis in which we used 4724ch
and 4823ch respectively.

Figure 6: Parameter estimation with multiple channels ICA(correlation method).

The green and black lines correspond to the cases where noises are removed using one
PEM channel. While the 0.01Hz peak was reduced by using 4724ch, the 0.04Hz peak was
reduced by using 4823ch. However, both peaks cannot be reduced when we use only one
PEM channel. The data with ICA using two PEM channels (cyan line) has much higher
SNR than the data with ICA using only one PEM channel. In addition, we successfully
reduced both 0.01Hz peak and 0.04Hz peak. This result suggests that by combining many
environmental channels we can effectively remove noises with various characteristic fre-
quencies.
　
・FastICA
As explained in § 2.3, FastICA can be easily implemented even when there are more than
two components. We applied FastICA to the mock data, 4724ch and 4823ch simultane-
ously. Here, mock data included the same sinusoidal signal as in the previous section. The
result is shown in Fig. 7.
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Figure 7: Parameter estimation with multiple channels ICA(FastICA).

As compared to Fig. 5, SNR at fiducial frequency is much higher than the case where
only 4724ch was used. In addition, its value is close to the that for three component corre-
lation method (10.60 for FastICA, 10.89 for the correlation method). This result suggests
that the use of multiple environmental channels can also enhance the effect of FastICA
noise separation. However, compared to the case of the three components correlation
method, we may have to make several trials of 3ch FastICA to obtain the best result. This
indicates that correlation method is more effective than FastICA for this dataset.

3.3 Parameter estimation for weakly correlated data

We also perform parameter estimation for weakly correlated data. Here, we used 4724ch as
an environmental channel. From Fig.3, ICA using 4724ch is most effective for f = 0.227Hz
with this dataset. We injected sinusoidal wave signal with f = 0.227Hz and A = 3×10−11.
Again, we applied MF to search for the frequency with the highest SNR. The result is
depicted in Fig. 8.
　 The red line represents SNR calculated with the raw mock strain. The green and
blue lines correspond to the noise-removed strain by the correlation method and FastICA,
respectively. An enlarged figure of the fiducial (f = 0.227Hz) area is shown in Fig. 8 (b).

18



(a) Overall view of the result.

(b) Around the fiducial frequency.

Figure 8: Parameter estimation for the weakly correlated data with the fiducial frequency
f=0.227Hz.

As one can see, in the case of the raw mock strain, the position of the SNR peak deviates
from the fiducial one. On the other hand, after applying ICA, the SNR is increased and
the peak is found at the correct frequency.
　Next, we applied multiple channels ICA for this data using 4724ch and 4774ch. Here,
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we used the correlation method. Figure 9 depicts the results of analysis. The enlarged
figure of the fiducial area is shown in Fig. 9 (b).

(a) Overall view of the result.

(b) Around the fiducial frequency.

Figure 9: Parameter estimation with the multiple-channel ICA(correlation method)

The green and black lines correspond to the data with ICA using one PEM channel.
When using only 4774ch, enhancement of SNR is small and still the SNR peak deviates
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from the fiducial frequency. However, the data with ICA using two channels has slightly
higher SNR at the correct frequency than the data with ICA using only 4724ch. This
result for the weakly correlated data also supports our expectation that the effect of ICA
can be enhanced by combining many environmental channels. 　

4 Discussion

In § 3, we show the performance of ICA as a method of non-Gaussian noise subtraction in
GW data. Both ICA methods, namely the correlation method and FastICA subtract the
portion of seismic noise. However, the correlation method shows better performance than
that of FastICA in most cases. In this section, we consider the reason why this difference
appears.

We here use the same notation as in § 2, x1(t) to be the strain channel, xi(t) (i = 2, ..., n)
to be the other environmental channels. As we already discussed in § 2.1, the data of these
channels can be written in the following form

x1(t) = h(t) + n(t) +
n∑

j=2

a1jsj(t),

xi(t) =
n∑

j=2

aijsj(t).

(25)

Here si(t) (i = 2, ..., n) are environmental noises that can be measured by the PEM
channels xi(t), and n(t) collectively represents noises of the strain channel to which these
PEM channels are insensitive. Let us transform x1 as

x̃1 = x1 +
n∑

j=2

b1jxj, (26)

in order to satisfy ⟨x̃1xi⟩ = 0 (i = 2, ..., n). This condition can be expanded as

⟨x̃1(t)xi(t)⟩ =

⟨(
h(t) +

n∑
j=2

a1jsj(t) +
n∑

j=2

b1j

n∑
l=2

ajlsl(t)

)
n∑

k=2

aiksk(t)

⟩

=
n∑

j=2

a1jaij +
n∑

j=2

b1j

n∑
k=2

ajkaik = 0,

(27)

where we have used ⟨sisj⟩ = δij as in § 2.3. From this equation, we obtain

b1j =
n∑

i=2

a1ia
−1
ij (28)
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with j = 2, ..., n. Note that a−1
ij is the inverse matrix of aij (i, j = 2, ..., n), which is an

(n − 1) × (n − 1) partial matrix of the mixing matrix A = (aij)1≤i,j≤n. By substituting
this into eq.(26), we obtain

x̃1 = x1 +
n∑

i=2

b1ixi

= h(t) + n(t) +
n∑

i=2

a1isi(t) +
n∑

i=2

n∑
j=2

n∑
l=2

a1ja
−1
ji ailsl(t)

= h(t) + n(t) +
n∑

i=2

a1isi(t)−
n∑

j=2

n∑
l=2

a1jδjlsl(t)

= h(t) + n(t) +
n∑

i=2

a1isi(t)−
n∑

j=2

a1jsj(t) = h(t) + n(t),

(29)

which shows that all environmental noises si, which are measurable by PEM channels,
are removed from x̃1 just by imposing ⟨x̃1xi⟩ = 0 (i = 2, ..., n). In other words, when we
consider auxilialy channels which are not sensitive to gravitational waves, and their target
noises affects the strain linearly and additively, we can obtain independent component h(t)
by the transformation (26) which eliminates the two-point correlation between the strain
and those channels. Although we have not given concrete expression of the transforma-
tion (26), ⟨x̃1xi⟩ = 0 is naturally achieved by the correlation method which is analogous
to the Gram-Schmidt orthogonalization. Thus, we find that the correlation method is the
optimal filter for linearly coupled noise with ai1 = 0.

On the other hand, FastICA maximizes negentropy after the whitening which makes
⟨x̃1xi⟩ = 0 without using the condition ai1 = 0 (i ̸= 1). Since we do not recover this
property in general even after maximizing the negentropy, FastICA tends to show less
enhancement of SNR than that of the optimal correlation method for most cases in our
analysis. This illustrates the importance of incorporating characteristic features of the
system as much as possible before applying ICA.

However, the above discussion is only the case where linearly coupled noise with ai1 = 0
is concerned. As for real observational data, there should be much more complicated
mixing such as non-linear coupling of the noise, and we might need a formulation of ICA
which treats general mixing of signals. In that sense, it is noteworthy that FastICA, which
is formulated without any assumption like ai1 = 0, also shows enhancement of the SNR
and improvement of the performance with multi-environmental channels to some extent.

5 Conclusion

In the present paper, we have demonstrated usefulness of ICA in gravitational wave data
analysis in application to the iKAGRA strain and environmental channels. Assuming
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continuous waves as input signals, we have shown that ICA can enhance SNR in particular
when the strain channel has large correlation with environmental ones. Moreover, we have
shown that ICA can correctly recover input frequencies in parameter estimation. We have
also found that combining multiple environmental channels can enhance the effect of ICA
to improve SNR.

There are, however, a number of limitations in the analysis presented here because the
iKAGRA data contains more low frequency mode than wanted due to the simplified vibra-
tion isolation system compared with the full designed specification which will be realized
with bKAGRA [39], and iKAGRA configuration was not equipped with environmental
monitors that measure hecto-Hertz frequencies. Hence we had to concentrate on relatively
lower frequency components as the first step of application of ICA to real data analysis of
laser interferometers.

Another limitation is that we have restricted to the case all the environmental noises
that can be measured by the PEM channels under consideration act on the strain channel
linearly and additively, without incorporating nonlinear couplings. In this particular situ-
ation, we have shown that the Gram-Schmidt decorrelation approach, or the instantaneous
Wiener filtering which we dubbed the correlation method, gives the optimal result of en-
vironmental noise removal as an implementation of ICA. However, ICA can be used even
in the cases noises of different origin are nonlinearly coupled to affect the strain channel
as demonstrated in [27]. This is one of the merits of ICA absent in other methods. We
could not perform such an analysis here due to the limitation of available PEM channels.
We plan to return to this issue when the full cryogenic configuration of bKAGRA starts
operation with more PEM channels.
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