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Introduction
Target sensitivity of KAGRA
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Seismic Noise

KAGRA interferometer has been designed with the intent to develop an experimental apparatus for GW

starting from 10 Hz.
¥ Seismic noise: 1s the dominant noise at low
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A seismic 1solation with a capability attenuation ~ 10 orders of magnitude is needed!!!

» Free-falling TM (Test Mass)
» Isolation from Seismic Noise




Mechanical attenuators of the seismic vibrations

A good approximation of the free falling
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Solution adopted in KAGRA is based on the idea to replicate a certain number of
harmonic oscillators of length ~ 2 m to obtain a sophisticated mechanical structure:
VIS suspension system




VIS Suspension Systems
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13.5m

Type A suspension

 Pre-isolation stage:
* the Inverted Pendulum (IP-3 legs structure)

* mechanical filter (FO)

The system provides a good seismic
F2 & isolation in horizontal direction (IP) as well as
in the vertical one (GAS Filters).

e The passive multi-stage pendulum chain:

F3 & * Four mechanical GAS filters (F1, F2, F3, BF
Steering Filter)

Vertical modes of the mechanical filters are below 1 Hz

BF &= e The cryopayload:

e Platform

e Marionette

e |ntermediate mass
e Test mass

The normal modes of the pendulum mechanical structure are
confined in low frequency region (below 2Hz)




BF
7 LVDTs
7 coils

e 3 lInertial sensors

3 coil

IM
6 OSEM
6 coil

™
6 OPLEV
6 coil

Cryopayload
MN

e 6 OPLEV
e 6 coil

Type A suspension:
Sensors and actuators

The feedback control could be
implemented in different points:

* |Inverted Pendulum

e vertical GAS filters

e Bottom filter

* Marionette and Test Mass

1. Control on IP to reduce the motioninL, Tand Y
2. Control on BF to reduce the Yaw motion of the chain
3. Control on top stage and GAS filter to reduce the

Vertical motion
4. Control on the Marionette and Test Mass to reduce
the Yaw and Pitch motion

We focus our attention on the points 1 and 2.

For IP, BF and GAS Filters the adopted control strategies are:

© On the IP is implemented an Active Mode
Damping of the resonance modes and for

seismic noise reduction _
<~ On the BF and on the GAS filters a

viscous damping control of the
resonance modes is implemented




Large disturbances

Type A suspension:requirements

1. Calm-down phase

Requirement:
- Decay time <1 min.

Settled

(2. Lock-acquisition phase

Requirement:
- RMS mirror velocity £ 1 um/s

- RMS mirror angle £ 1 urad

Interferometer
locked

3. Observation phase

Requirement:
- Low control noise at >10 Hz

~—

£
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e 1LVDT _’8;4

F2

1 coil

F3

1vDT T
1 coil

BF
7 LVDTs

7 coils & «

Feedback control

Feedback control

Feedback control

Cryopayload

Feedback control

Type A: actuation points

Calm down phase:
* IP control

Calm down phase:
* GAS filters control

Calm down phase:
*BF Y control
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Type A suspension: sensors and actuators

To implement the Damping control on the IP and on the BF first we build the diagonalized
sensors and actuators in the (L, T,Y) base

IP

ot LVDTs sensing matrix
sensor base: Geometrical transformation >Euler base:
- (H1, H2,H3) (L, TY)
Eo o Read-out Driving matrix
LVDT H3 Noise injection from each
colLHe o Actuators base:  actuator (@2 Hz line) , Euler base:
(H1, H2,H3) (L, T,Y)
o ~ LVDTs sensing matrix
H2 H3 sensor base: Geometrical transformation Euler base:
(H1, H2,H3) > (L, TY)
L2 o Va (V1, V2,V3) (P, R,V)
BF PR
V2 Y Trans. A_ V1 DriVing matrix
Actuators base: Geometrical transformation Euler base:
H1 (H1, H2,H3) » (L, T)Y)
(V1, V2,V3) (P R,V)
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Inverted Pendulum (IP) mechanical transfer functions

TF: ACT vs LVDT,
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Bottom Filter (BF) mechanical transfer functions

TF: ACT, vs LVDT,
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[pem/pem]

Type A:

Input suspensions (ITMX,ITMY):

3 accelerometers

input:
F feed )

output:
X —Xp

Acc

inertial sensor (I)

End suspensions (ETMX,ETMY):

input:
F,f(c‘d'

Crip

Output signal : acceleration

>X

Geo

3 Geophones

Output

P| Calibration filter

> X

Output signal : speed

In both cases we need of the inter-calibration with the LVDT signals!

Injecting white noise along the IP Yaw degree of freedom and to measure the transfer function:
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distance of each inertial sensor
from the center of IP

Yaw is an isotropic motion:
these TFs should be equals.

[pem/pem]

Yawlvdt - r

8€0;

TF

YaWeeo,

; Geophones frequency respose: before calibration
10 . '
TFYawvsAlz 1.250 at 0.5 Hz
TFYawvsfd: 1.045at 0.5 Hz
102 TF, . wvens' 0-77 2t 0.5 Hz |
Uk
R
' \l'l |
10 )
I’I
)
II‘ '
1
100 ,"‘ I /—'-—/\\| s ~,.——-\——f’_—\!:'7-:‘-: af o 'f-",','.f“M' va W
DO R / ﬂ/
-~ -\ V
\w. /
10t 4
Geophone frequency responce

=
o
N

101 10°

Frequency [Hz]

10!

15



Type A: inertial sensor (1I)

COIL H1 We diagonalize the inertial sensors in the (L,T,Y) base.

1188

Read-out Sensing matrix

[mm]

Noise injection from each diagonalized
Sensors base: actuator (@2 Hz line) ,  Euler base:
o (H1, H2,H3) (L, T.Y)

LVDT H2
COIL H2

LVDT H3
COIL H3

The sensor response is equalized.
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Type A: Damping control

IP= mechanical system
Feedback control scheme

LVDT= is the sensor monitoring
the displacement

v

Xivdt = X1p — X0

Xo is the ground motion

— VDT

C=is the damping filter set= is the set point

The closed loop signal is

In thi figuration:
defined as n IS conrtiguration

R S (o IP LVDT signal =
Shw) = = vl )~ Error signalin L, T,Y

17
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Type A: Damping control
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In this configuration we
are limited by seismic noise
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Type A: seismic noise reduction and Inertial control

Let’s consider the sensors in the L,T,Y base

LVDT: noise budget
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Accelerometer: noise budget
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Inertial control: noise budget (1I)

LVDTL:esti mated intrinsic noise

ACCL:esti mated intrinsic noise

Seimic noise: Longitudinal Contribution
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imic noise: Transvers Contribution

Acc

In the range [0.1,0. 5] Hz,
the LVDT signal is spoiled

by

Below 0.3 mHz,

frequency [Hz]

LVDT, :estimated intrinsic noise
GEO,:estimated intrinsic noise

i noise: Transvers Contribution |

0.25

10!

frequency [Hz]

the accelerometer noise is dominant

Below 0.250 mHz,
the geophone noise is dominant

We want reduce the contribution
of the seismic noise

Blending technique
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Blending technique (I)

To take the better part of both signals, the blended virtual sensing signals, is attained through
neutral pre-filtering.

- ACC + +

-7 ACC or GEO
et LVDT
Hich Pass filter (HP) Low Pass filter (LP)
Ve 1gh Pass nlter
@
LVDT: intrinsic .
e || seism HP+LP=1
LVDT {:J} é‘

o LP filter must be shaped taking into account the background disturbance (seismic noise)
o For LP filter tipical cutoff is below 100 mHz, to reduce the seismic contribution.

o For HP filter we should be careful not to reintroduce accelerometer noise.

Blended Sensor is defined as : S(w) = LP(®) - S; ypr(®) — o *HP(w) - S, (@)
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Blending technique (I)

——— P90
——— HP90O

Example of blending filters:
4 Blending frequency: 70 mHz

4 Blending frequency: 90 mHz

102 102

4 Blending frequency: 200 mHz

200 mHz

Impact of each one
of these strategies on the
seismic noise:
The 90 mHz and 70 mHz are shaped
to reduce the re-injection
of seismic noise in the range
[0.2 -0.5] HZz

S |0.15 Hz 0.5|Hz |
10 ' ' : ) ' —
I | 10°

Frequency [Hz]
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pm/sqrt(Hz)

Inertial damping: IP residual motion

ACC

The closed loop signal is defined as

L1 HP Blended Virtual

sensor: BVS
+ .| PID -
3 +
1 LP ]

( ) NP blended signal =

SChiw) = ——
1 —M;(® ( ) ( ) Error signalin L, T,Y

LVDT \) .
In this configuration the residual motion of the IP is

102 T 102 T 102 T
——IP L (ID closed) ——T IP (ID closed) ——Y IP (ID closed) T T T T T
- = =rms (ID open) = =rms (ID closed) - = =rms (ID closed) ——IP L (ID 90 mHz & UGF @1 Hz) ——IP T (ID 90 mHz & UGF @1 Hz) ——IPY (ID 200 mHz)
——|P L (ID closed) ——T IP (ID open) ——Y IP (ID open) - =-rms == -rms == -rms
- - - —— —— —rms —rms —rms

1 rms (ID closed) 1 rms (ID open) 1 rms (ID open) - = =|P L (Position control) - - =|P T (Position control) - = =|PY (Position control)
100 g/ 10" £ 107 F E 100 1 100 1 10°F 1
Al

IPL IPT IPY

IPY

10%F 10°F 1005~ .

~ N

z = ~ 10" 1071

el \ £ N N B~ A=<
10 G107 E = g10tE/- =~ = =

0 o X [ [

€ 5 2 3

© = =
= 5 E E

102F 102 F 102 F

102 102

103 F B~ - 103 F 103 F
r

10

10* ! 10 ‘ 3 3
10° 107 10° e 10! 10° 10t o 10! 10° 10t 10! 1(‘)0 ‘ 10t
Frequency [Hz] Frequency [Hz] Frequency [Hz] Frequency [Hz] Frequency [Hz] Frequency [Hz]

Open loop versus closed loop Closed loop: LVDT is the error signal
with Inertial Damping Closed loop: blended signal is the error signal
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Inertial damping: BF & Test Mass (TM) residual motion

102

102

102

——T BF (ID closed)
- = =rms (ID closed)
——T BF (ID open)
- = =rms (ID open)

BFT
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10t .

BFL |
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BF Y
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In this configuration:

4 MN & TM P:
4+MN&TMY:

damp off
damp off

10°
Frequency [Hz

100 L

z

-

2
n

pm rad/sqrt(Hz)

103 H

In this configuration:

4 BF L:
4 BFT:
4 BF Y-

damp off
damp off
damp on

10t |

100F ~

10-1 L

pm rad/sqrt(Hz)

10-2 L

——TM P (IP:ID 90 mHz & UGF @1 Hz)

- ==rms

——TM P (IP: Position control)

- = =rms

10-3 L

——TM Y (IP:ID 90 mHz & UGF @1 Hz)
- ==rms
——TM Y (IP:Position control)
- ==rms

10!

10° 10! 10! 10° 10
Frequency [Hz] Frequency [Hz]




Conclusion and next steps

* We have diagonalized sensors and actuators

* We applied the bending technique to ITMX

~ L and T blending frequency: 90 mHz
~ Yaw blending frequency: 200 mHz

 Thanks to the implementation of the inertial damping we
observed a reduced motion of IP, BF and TM

L T Y P

RMS [um]  RMS [um] = RMS [urad] RMS [prad] * |P inertial damping ON
* YAW BF damping ON

IP 0,05 0,08 0,08 e All other d.o.f NOT DAMPED
BF 1 1 0,3
™ 1 0,2

* The test on ITMX shows that inertial damping (ID) reduces the test mass motion more

than the position control with only LVDTs

* \We need to implement the ID on all the type A suspension also by using the
geophone.
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