Status of Type-A suspensions for KAGRA

Yoshinori Fujii for KAGRA collaboration

Status of Type-A suspensions for KAGRA

What is going on?

-- Mechanical installation

- -- Servo filter implementation
- -- Verification of suspension performance

For the test masses,

- Upper 5 stages: room-temperature
- Lower 4 stages: cryogenic-temperature

INVERTED PENDULUM with 3 horizontal

- -- LVDT & actuator units
- -- inertial sensors

GEOMETRIC-ANTI SPRING with 1 vertical LVDT & actuator unit

(With collaboration of group in Pisa)

BOTTOM-FILTER DAMPER with 3 horizontal & 3 vertical LVDT & actuator units 13.5 m BF

Then, mechanical installation status

for O3-observation

Mechanical installation has done! For all 4 of them!

Mechanical installation has done! HOWEVER ..

ETMX & ETMY: for ETMX - F2 GAS for ETMY - F1 & F2 GAS

Hitting,, ~No oscillation

Mass tuning, necessary but no accessibility.

ITMX & ITMY: for ITMX / ITMY - F0 GAS

Newly made blades could not hold the system..

Blade replacement, necessary but time consuming (etc).

Mechanical installation has done! HOWEVER .. According to a simulation, assuming 1% coupling,

5th KAGRA international workshop on February 14th 2019, Yoshinori Fujii

Servo filter implementation status

With displacement sensors, [for damping]

Locked! Thanks to Kamioka environment.

Candidate (main) resonant modes?

TTT

0.36 W

17 / 22

Verification of suspension performance

Measurement:

Vibration isolation ratio, [Good news!]

V to L coupling, [System is not yet identified..]

From BF-GAS to TM

Real was not so simple...

ruary 14th 2019, Yoshinori Fujii

Summary:

- -- All the Type-A suspensions have been installed.
- Damping controls are working properly, however, some resonances are not yet damped efficiently.
 Implement damping controls at payload stages
- -- Reducing RMS is necessary when the seismic noise is high. Implement inertial damping at IP stage

For soon next:

Do mode identification including the heat-link peaks Design the filters in the observation phase.

Backup

Seismic noise

Seismic attenuation

5th KAGRA international workshop on February 14th 2019, Yoshinori Fujii

Resonance damping

→ Active control

Designing active control system / Control phase

Suppress large disturbance

Reduce RMS velocity RMS angle (Root-Mean-Square)

Keep position with low noise control

5th KAGRA international workshop on February 14th 2019, Yoshinori Fujii

28 / 22

JGW-P1809382

With displacement sensors, [residuals] In bad weather Seismic motion when the weather was normal/bad (From page #16)

Vertical transfer functions (fitted)

Measurement:

Force transfer functions

From (TM-RM)-act to TM

Force transfer functions

From (IM-IMR)-act to TM

Force transfer functions

From (MN-MNR)-act to TM

Note: Measurement of mechanical suspension performance with X-arm cavity

Excitation point:

Excited stage name	Degree of freedom
ТМ	L
	Ρ
IM	L
	V
MN	L
BF	GAS
	(L)
IP	L

Sensing point:

All the local sensors for ETMX and ITMX

- (*1) Some resonances have to be identified, as shown in the above.
- (*2) measurement files are stored under /users/VISsvn/ though, Not much organized well now... please let me know if you want to have them ASAP.

Designing active control system / ex. Type-Bp SAS

2. Decay time measurement

(Example)

→ We have to measure the decay time constants w/ and w/o damping controls, in order to verify the damping control performance, FOR ALL THE TYPE-A/B/Bp SUSPENSIONS.