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Abstract

In 1915, A. Einstein published General Relativity as a theory of the relationship between
spacetime and matter [1,2]. He predicted the existence of gravitational waves as one of the
consequences of general relativity. In 2015, LIGO (Laser Interferometer Gravitational-
Wave Observatory) directly detected the gravitational wave event from a binary black
hole (BH) merger for the first time [3]. This event not only served as a verification of
Einstein’s general relativity theory but also turned to be a major discovery of the first
direct observation of BHs. It is the beginning of gravitational wave astronomy.

My research focuses on two independent topics. One is on installation work for a
gravitational wave detector and the other is on mathematical model of a suspension
which is a critical piece for gravitational wave detectors.

In Japan, a gravitational wave detector called KAGRA is currently under construction.
KAGRA is different from other gravitational wave detectors in that it is in the basement
and it uses cryogenic mirrors. All mirrors in KAGRA are suspended to isolate vibration
and they designed mainly three kinds of suspensions; Type A, Type B and Type Bp. I
installed Type B suspensions which hang the Beam Splitter (BS) and the Signal Recycling
Mirrors (SRs) in cooperation with the NAOJ staff.

Measuring the actual transfer function is a good way to know the feature of the
suspension in frequency space. However, when we start an observing run, we cannot use
the real suspension in KAGRA. So it is significant to build a model in state space. In state
space, one can use ABCD matrices which includes the information of suspensions. And
from this, one can simulate the transfer function and frequency response without using
real one. To know the time series of suspension, A. Shoda, Y. Fuji and I implemented
the state space to control the suspension. To build the model, we used Matlab and
Mathematica.

To check the behavior of time series, I checked the Yaw motion of SR3 intermediate
mass (IM) because the Yaw has less coupling and it was expected to act better than other
degree of freedoms. The SR3 IM Yaw time series of the step response matched for the
first 20 seconds.
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1 Detection of Gravitational Waves

1.1 Gravitational Waves
Gravitational waves, which propagate at the speed of light, are distortions of spacetime,
which were predicted by Albert Einstein using his theory of General Relativity in 1916.

In 1687, I. Newton published “Philosophiæ Naturalis Principia Mathematica” and
this was the origin of what is known as “Classical Mechanics”. In this theory, space, time
and matter are independent of each other. The relationship between the gravitational
potential ϕ and matter was described as

∆ϕ = 4πGρ,

where G is the Newtonian gravitational constant and ρ is the density of matter. For
example, in the case of a point mass of magnitude M at a displacement r, i.e. ρ = Mδ(r),
the potential of the distribution: ϕ is

ϕ = −G
M

r
.

In 1915, A. Einstein published General Relativity as a theory of the relationship be-
tween spacetime and matter [1, 2]. In this theory, we consider 4 dimensional spacetime
xµ = (ct, x, y, z) as a manifold and we call a coordinate a “world point”. The interval
between two world points ds is described as

ds2 = gµνdxµdxν ,

where gµν is a metric tensor.
In general relativity, space, time and matter interact and their relationship is described

as

Gµν = 8πG

c4 Tµν , (1.1)

where Gµν is the Einstein tensor, which includes the information about spacetime and
Tµν is the stress-energy-momentum tensor which includes the information about matter.

In 1916, Einstein predicted the existence of gravitational waves from eq. (1.1) [4].
Gravitational waves are ripples in time-space. In a case of a weak gravitational field, we
can use a metric like

gµν = ηµν + hµν , |hµν | ≪ 1. (1.2)

1
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By substituting eq. (1.2) in eq. (1.1), we can get the linearized Einstein equation:

□hµν = −16πG

c4 Tµν . (1.3)

When Tµν = 0, eq. (1.3) becomes

□hµν = 0, (1.4)

whose solution is

hµν = Aµν exp(iωg(t − z/c)), (1.5)

Aµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (1.6)

where ωg is the angular frequency of the GW and h+ and h× are called the amplitudes of
the “plus” and “cross” polarizations of the GW. From eq. (1.5) we see GWs propagate at
speed of light and from eq. (1.6) we see they have two independent polarization modes.
Fig. 1.1 is an image of “Plus mode” and “Cross mode”.

Figure 1.1: Polarization modes of gravitational waves

When a mass accelerates, it emits GWs. Because of the conservation of energy, GWs
don’t emit a monopole. And because of the conservation of momentum and angular
momentum, GWs don’t emit a dipole. From the quadrupole approximation, the amplitude
of the gravitational wave is calculated as [5]

hij = 2G

c4R
Q̈ij, (1.7)

where R is the distance between the source of gravitational waves and the observer and
Qij is the quadrupole moment of the mass distribution.
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1.1.1 Sources of Gravitational Waves

Compact Binary Coalescence (CBC)

Compact Binary Coalescence is an coalescence event like black hole (BH) – BH and
neutron star (NS) – NS. Advanced LIGO (aLIGO) first detected GWs from a BH–BH
binary beyond ∼400 Mpc [3]. aLIGO and Virgo also detected GWs from a NS–NS binary
[?]. Up to now, 11 CBC events has been detected [6]. Other strong possibilities are
GWs from BH-NS binary [7] but they have not been detected yet. Typical estimated
maximum amplitude is h ∼ 10−21 and estimated frequency before is f = c3/ (π61.5GM) ∼
4.4×103/(M/M⊙) Hz, where M is the total mass of CBC and M⊙ is the mass of the sun [9].
In this case, since the wave-form is predicted from Post-Newtonian approximation and
numerical simulation, we can use a matched filter which helps to get gravitational wave
signal efficiently from noise. With second generation GW detectors: aLIGO, AdVirgo
and KAGRA, several or dozens of detections are expected per year [8].

Supernova (SN)

When a supernova occurs, if the core of the star is asymmetric, it produces gravitational
waves. Unlike a CBC, it is difficult to predict the waveform of gravitational waves emitted
by a supernova explosion. Because of this, we cannot use a matched filter to find a signal
from a detector in this case. On the other hand, the frequency of supernova explosions is
higher than that for CBCs. The estimated GW frequency is around 1 kHz [10].

Pulsar

A pulsar is a highly magnetized rotating neutron star or white dwarf that emits a beam
of electromagnetic radiation [11]. If a pulsar is asymmetric, it emits gravitational waves.
Especially, millisecond pulsars whose rotation period are between 1 ms and tens of ms
emit gravitational waves whose frequency are between about 10 Hz and 1000 Hz. GWs
from pulsars are weaker than those from CBCs.

Others

Other sources are Gamma-Ray Bursts (GRB) source, Low-Mass X-ray Binaries (LMXB),
Soft Gamma (-ray) Repeaters (SGR) and the Gravitational Wave Background (GWB).
GWs from these sources have not been detected yet. table 1.1 classifies the types of GWs
by predictability and duration.

Table 1.1: Type of GWs

Waveform Short time Long time
Predictable CBC, GRB source pulsar, LMXB

Unpredictable SN, SGR GWB
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1.1.2 Detection of Gravitational Waves
In 1974, R. A. Hulse and J. H. Taylor proved the existence of gravitational waves indirectly
and won Nobel prize in 1993 [12,13]. They showed that their data fit the equation in fig.
1.2 from General Relativity:

Ṗb = − 192πG5/3

5c5 (Pb/2π)−5/3
(
1 − e2

)−7/2

×
(

1 + 73
24

e2 + 37
96

e4
)

mpmc (mp + mc)−1/3 ,

(1.8)

where Pb is the orbital period , e is the eccentricity, mp is the pulsar mass and mc is the
companion mass.

In 2015, LIGO (Laser Interferometer Gravitational-Wave Observatory) achieved the
first direct detection of gravitational waves, which were from the merger of a 36+5

−4M⊙
BH and a 29+4

−4M⊙ BH. The final BH mass was 62+4
−4M⊙, with 3.0+0.5

−0.5M⊙c2 radiated in
gravitational waves [3]. Fig. 1.3 shows the time series of the amplitudes of the GW.
For this achievement, R. Weiss, B. C. Barish and K. S. Thorne won Nobel prize in 2017.
Especially interesting is the event GW170817, which was the first detected merger of two
neutron stars and the first multi-messenger observation. First GWs were detected and
estimated the rough location of the source on the celestial sphere. Using this estimation,
many radio telescopes detected the astronomical event.

Figure 1.2: Orbital phase residuals. Figure
taken from Ref. [13]

Figure 1.3: LIGO’s first direct detection of
GWs. Figure taken from Ref. [3]

1.2 Gravitational Waves Telescopes

1.2.1 Resonant Mass Antennas
J. Weber made an attempt at detecting gravitational waves in 1960s [14]. He made a
series of resonant mass antennas, nowadays called “Weber bar.” The equation of motion
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of a Weber bar is

µ

(
ξ̈ + ω0

Q
ξ̇ + ω2

0ξ

)
= fGW(t), (1.9)

where µ is the Lamé parameter, ω0 is the normal frequency, ξ is a distance between
arbitary two points in the bar, Q is the mechanical quality factor and fGW is the tidal
power from the GW [15]. When a GW whose frequency is very close to the resonant
frequency of the bar passes by, the bar oscillates in a normal mode. However he never
observed GWs.

1.2.2 Interferometeric Detectors
Because of the resonant mass antennas’ narrow observable frequency band, a laser in-
terferometric detector is mainstream in these days. Here is an image of a Michelson
interferometer with the mirrors suspended by wires in fig. 1.4. The principle of the de-

Figure 1.4: A Michelson Interferometer. Figure taken from Ref. [16]

tection of GWs is as follow. An incoming coherent beam is split at Beam Splitter (BS),
one beam passes straight and the other beam turns 90 degrees. Both beams are reflected
by the end mirrors, go through the BS again and thence to the entrance port and a photo
detector. When GWs pass the interferometer, the arm lengths change as(

∆lx

∆ly

)
= 1

2
h+

(
lx

ly

)
eiωg(t−z/c) + 1

2
h×

(
ly

lx

)
eiωg(t−z/c), (1.10)

and we can get the GWs information from the change of the laser’s phase at the photo
detector. The frequency response function from GWs to the Michelson interferometer is

HMI(ωg) = 2Ω sin γ

ωg
e−iγ, (1.11)

γ = lωg

c
(1.12)

and when

γ = π

2
(1.13)
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satisfied, in other words when ωg ≃ 100 Hz and lx = ly ≃ 750 km for example, |HMI(ωg)|
is maximized. However it is impossible to build a 750 km arm length interferometer
for the Earth is a sphere. There are two main solutions to this problem: using Fabry-
Pérot cavities and delay lines in the arms. Here is an image of Fabry-Pérot Michelson
interferometer which is shown in fig. 1.5. To increse the optical path length, we set a

Figure 1.5: A Fabry-Pérot (FP) Michelson Interferometer. Figure taken from Ref. [16]

mirror between the BS and the end mirror. Then, the beam reflects and makes many round
trips and creates a longer effective arm length interferometer. The frequency response
function of a FP Michelson interferometer is

HFPMI(ωg) = α

1 − rFrEe−2iγ
HMI(ωg), (1.14)

α = t2
FrE

−rF + (r2
F + t2

F) rE
, (1.15)

where Ω is the angular frequency of the laser, rF is the reflectance of the FP cavity’s front
mirror, rE is the reflectance of the FP cavity’s end mirror, and tF is the transmittance of
the FP cavity’s front mirror.

Furthermore, to recycle the laser beams which head to the beam port and the photo
detector, we set Power Recycling mirrors and Signal Recycling mirrors. The principle
is from an application of Michelson interferometer. Fig. 1.6 is an applied version of
Michelson interferometer: a Dual-Recycled Fabry-Pérot Michelson Interferometer.

Figure 1.6: A Dual-Recycled Fabry-Pérot (DRFP) Michelson Interferometer. Figure taken
from Ref. [16]
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Figure 1.7: Typical measured seismic motion of outside of Kamioka mine. Figure taken
from Ref. [17]

1.2.3 Noise source
Seismic Noise

Except duaring an earthquake, in everyday life we seldom feel ground vibrations; however
it always vibrates with very small amplitudes. Because of this, when one builds an
interferometer on ground, one cannot avoid an effect from seismic noise. It is well known
that seismic spectrum is roughly proportional to f−2. In fact, the power spectrum in
Kamioka [17] which is shown in fig. 1.7 is more or less described as

xseis = 10−9

f 2 m/
√

Hz f ≥ 0.1 Hz. (1.16)

Because the seismic motion is larger than the requirement of KAGRA, we need the
vibration isolation system.

Thermal Noise

Since an interferometer is always in contact with a finite-temperature thermal reservoir,
the component always vibrate thermally. Especially, the vibration of mirrors (both mirror
part and coating part) changes the optical path length, so we need to reduce this [18].
Thermal noise is generally described by the Fluctuation Dissipation Theorem. There are
two kinds of damping, one is a viscous damping and the other is structural damping. The
viscous damping is from residual gas in a chamber and its spring constant is real number.
On the other hand, the structural damping is related with the internal structure of the
suspension and its spring constant is complex number. When we have a viscous damping,
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the power spectrum of thermal noise is described by [19]

Gx(ω) = 4kBT

mQ

ω0

(ω2 − ω2
0)2 + ω2

0ω2/Q2
, (1.17)

Gx(ω) ≃ 4kBT

mω3
0Q

∝ f 0 (ω ≪ ω0), (1.18)

Gx(ω) ≃ 4ω0kBT

mω4Q
∝ f−4 (ω ≫ ω0), (1.19)

f = 2πω, (1.20)

where kB is Boltzmann’s constant, T is temperature, m is the mass of the component,
Q is Q factor, ω0 is the resonance angular frequency. On the other hand, when we have
structural damping, the power spectrum of thermal noise is

Gx(ω) = 4kBT

mQω

ω2
0

(ω2 − ω2
0)2 + ω4

0/Q2
, (1.21)

Gx(ω) ≃ 4kBT

mω2
0Q

1
ω

∝ f−1 (ω ≪ ω0, Q ≫ 1), (1.22)

Gx(ω) ≃ 4kBTω2
0

mQ

1
ω5 ∝ f−5 (ω ≫ ω0, Q ≫ 1). (1.23)

Laser Noise

There are many kinds of laser noises: frequency noise, scattering noise, radiation pressure
noise and intensity noise. The most problematic noise is the frequency noise. When the
phase difference is δν(ω) in a Fabry-Pérot cavity, the noise is [20]

δϕ
(F)
FPMI = ϵCMRR

∫ ∞

−∞
H

(F)
FP (ω)δν(ω)eiωtdω, (1.24)

where ϵCMRR is the Common Mode noise Rejection Ratio. To stabilize the frequency, it is
common to use another Fabry-Pérot as a frequency reference device. However, since the
main interferometer itself is most sensitive to the frequency noise, we can also use it to
feedback its signal as well.

Gas Noise

Since molecules in the air have some finite size, the higher the number density, the more
the laser is scattered. Furthermore, when there are molecules on the optical path, the
refractive index changes and as a result, the optical path length changes. The mean square
of the optical pass length difference noise is described as [21]⟨

δx2
⟩

∝ n ∝ p

kBTgas
, (1.25)

⟨
δx2

⟩
= 4

√
2πα2m

1/2
mol

∫ L

0

p (z)
rlaser (z) {kBTgas (z)} 3/2

dz, (1.26)
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where n is the number density, p is the pressure, Tgas is the temperature of the gas, α
is the polarizability of the molecule, mmol is the mass of the molecule, L is the baseline
length of the interferometer, and rlaser is the radius of the laser. To prevent this, the
pressure in a duct in KAGRA is kept at 10−7 Pa.

1.2.4 Interferometric Detector Projects
The development of laser interferometric gravitational wave detectors started in the early
1970s [22,23]. At first, several groups tried to build interferometric detectors a few dozen
meters in length. As of now there are three km-class interferometer detectors. Table 1.2
summarizes GW detectors around the world.

Table 1.2: Project

Project Baseline length Type state
aLIGO1 4 km ground online
AdVirgo 3 km ground online
KAGRA 3 km ground under construction
GEO600 600 m ground online

TAMA300 300m ground built but offline
Einstein Telescope 10 km [24] ground under study
Cosmic Explorer 40 km [25] ground under study

LISA 2,500,000 km space under construction
DECIGO 1,000 km space under study

1.2.5 KAGRA
KAGRA is an interferometric detector which is under construction in Japan. It is designed
to detect the coalescence signal of binary NS at a distance of ∼250 Mpc with SNR=10
when the sources are at the optimal orientation with respect to KAGRA at the time of
the event [26]. There are two characteristics of KAGRA. One is that it is constructed
underground. This is because the seismic noise underground is 10−2 times smaller than
ground noise in range 1 – 100 Hz [17]. The other is that four key mirrors (two front
mirrors and two end mirrors) are cryogenic. Here is the target sensitivity of bKAGRA in
fig. 1.8.

1In the USA, there are two gravitational wave detectors: LIGO(Hanford) and LIGO(Livingstone).
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Figure 1.8: Target sensitivity curves of KAGRA. Taken from [27]



2 Vibration Isolation System for KAGRA

2.1 Vibration isolation Pendulum

2.1.1 Vibration Isolation due to a Pendulum

Figure 2.1: Spring pendulum

Figure 2.2: Spring pendulum

In order to isolate a system from seismic vibration, one can use mechanical filter with
elastic components, such as springs and pendulums. To understand how the mechanical
filter works, let us consider a simple example, a dimensional spring with a mass attached
as shown in fig. 2.1. The equation of motion of this system is,

mẍ = −k(x − x0), (2.1)

where m is the mass of the pendulum, x is the position of the mass, x0 is the ground
position and k is a spring constant. Note that both x and x0 are time-dependent vari-
ables. By the Fourier transform of this equation of motion and adjusting the appropriate
constants, we can get the transfer function of this pendulum,

H(f) := x̃(f)
x̃0(f)

= 1
1 − f 2 , (2.2)

11
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where f0 = 2π
√

k/m is the resonant frequency. Fig. 2.2 shows the Transfer function of eq.
(2.2) where f0 = 1 Hz. When the frequency is much lower than the resonant frequency,
f ≪ f0, H(f) is a constant, and when the frequency is much higher than the resonant
frequency, f ≫ f0, the magnitude of H(f) rolls off proportionally to f−2. From these
characteristics, we can reduce the vibration. On the other hand, when f ≃ f0, the motion
of the mass is amplified exceedingly.

Figure 2.3: n stages pendulum
Figure 2.4: TF of n stages pendulum

A n stages pendulum has n resonant frequencies and when the frequency is larger
than the maximum resonant frequency, the magnitude of Hn(f) decreases in proportion
to f−2n (See fig. 2.3 and fig. 2.4).

2.1.2 Passive Damping
Pendulum reduces the vibration only when f ≫ f0. On the contrary, the amplitude is
amplified in the vicinity of the resonance frequency. By using a damping filter, one can
reduce the magnitude of the test mass around resonant frequency. The easiest example
is to consider the velocity term in a pendulum. There are mainly two damping system,
one is “Passive Damping” and the other is “Active Damping”.

Fig. 2.5 is a damped pendulum and its EOM is

mẍ = −k(x − x0) − γ(ẋ − ẋ0), (2.3)

where γ is the damping coefficient of the damper. The TF of eq. (2.3) is

H(ω) = 1 + 2iη (ω/ω0)
1 + 2iη (ω/ω0) − (ω/ω0)2 , (2.4)

η = γ/2mω0, (2.5)
ω = 2πf, (2.6)
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Figure 2.5: viscous damped spring pendu-
lum

Figure 2.6: Transfer function of viscous
damped spring pendulum. When Q is
larger, the peak of the transfer function be-
comes shaper and the magnitude at high
frequency is lower.

where η is the damping ratio, ω is the angular frequency. A quality factor of the resonance
below is a good parameter to check the characteristics of the pendulum,

Q = 1
2η

, (2.7)

and fig. 2.6 shows the transfer function of the pendulum at each Q. When the frequency
is higher than Qf0, the magnitude decreases in proportion to f−1.

The other passive damping which is called “flexible damping”, is to use the other
spring and mass in fig. 2.7. With flexible damper, one can decrease the magnitude in
proportion to f−2 without poles. Table 2.1 is a table of characteristics of damping.

Figure 2.7: flexible damped spring pendu-
lum

Figure 2.8: TF of flexible damping

An example of passive damping is an eddy current damping system which is used in
KAGRA as well. Eddy currents are loops of electrical current induced within conductors
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Table 2.1: characteristics of suspenson

Type No damping Fixed damping Flexible damping
magnitude ∝ f−2 ∝ f−1 ∝ f−2

at high freq.

by a changing magnetic field in the conductor due to Faraday’s law of induction. For
instance, when a permanent magnet moves parallel to a metal plate like aluminum and
copper, the relative velocity between the magnet and metal plate decrease.

2.1.3 Active Damping
Passive damping filter like an eddy current damper’s performance depends on the relative
velocity of the magnet, that is it depends on the frequency of the suspended masses.
Since multi stages suspensions have many different resonant frequency, a passive damping
is not universal for damping systems. Furthermore, suspension systems with eddy current
dampers suffer from severe thermal noise at high frequencies, therefore it is completely
impossible to use them near the optics. In that case, one can use “active damping”.

In active damping, one can use feedback signals to damp the systems. Thanks to
this damping, one can control the frequency response and tune flexibly by designing
servo filters. So when one has set enough amount of sensors and actuators, it is possible
to control the system in all translational and rotational degrees of freedom. In other
words, the quality of servo filters is the key of active damping. If the servo filter is
designed insufficiently, it would not send the correct signals to actuators, sensors and
electric circuits. That’s why one needs to be careful when we design servos.

2.2 Suspension system in KAGRA

In KAGRA, there are mainly three kinds of suspensions. These three kinds of suspensions
are for the large optics. There are smaller optics with smaller suspensions. Fig. 2.9 shows
the sketch of KAGRA and fig. 2.10 shows the sketch of suspensions. One is called “type
A suspension”, another is called “type B suspension” and the other is called “type Bp
suspension”.

Four type A suspensions are installed as Fabry-Pérot cavities and they consist of “type
A tower” for vibration isolation and “cryogenic payload” for cooling the mirrors. Since the
required sensitivity of input mirrors and end mirrors in fig. 2.11 are 10−3 times smaller
than that of type B suspension, type A suspension has 5 GAS filters and its total height
is 13.5 m. GAS’ s details are written in subsection 2.2.2.

Type B suspensions are used for the beam splitter and the signal recycling mirrors.
Details are in subsection 2.2.1. Type Bp suspensions are smaller versions of type B suspen-
sions1 and installed as power recycling mirrors. Table 2.2 shows the basic specifications
of suspensions.

1Type Bp’s “p” is from “prime”.
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Figure 2.9: Sketch of KAGRA [28]

Table 2.2: Suspensions in KAGRA

Type A Type B Type Bp
Suspended Optics TM BS, SRM, SR2, SR3 PRM, PR2, PR3
Number of horizontal stages 9 (included IP) 5 (included IP) 3
Number of vertical stages 6 3 2
Payload temperature cryogenic (∼20 K) room temperature room temperature
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Figure 2.10: Sketch of Suspensions [29].

Figure 2.11: Requirement of each suspension. Data is from [?].
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2.2.1 Overview of Type B suspension
Fig. 2.12 shows the structure of SR3 suspension. In KAGRA, there are one BS and three
SRs (SR3, SR2 and SRM). Fig. 2.23 and fig. 2.24 are CAD figures of BS and SRs in
KAGRA. A Type B suspension is configured from a payload, GAS Filter chain and Pre-
isolator. A payload is configured from Test Mass 2 (TM), Recoil Mass(RM), Intermediate
Mass (IM), Intermediate Recoil Mass (IRM) [See subsection 2.2.2]. GAS Filter chain
is configured from Bottom Filter (BF) and Standard Filter (SF) [See subsection 2.2.2].
Pre-isolator (PI) is configured from Inverted Pendulums (IP) and Top Filter (TF) [See
subsection 2.2.2 and subsection 2.2.2].

Figure 2.12: Details about SR3 suspension.

2.2.2 Configuration of Type B pendulum
Inverted Pendulum

Pre-isolator in fig. 2.13 comprises an inverted pendulum (IP) with three legs and a GAS
filter. IPs support the suspension and it is the only object touching the ground. They
reduce the amplitude of seismic vibration at the microseismic peak frequency (0.2-0.5 Hz).
Fig. 2.14 describes a typical simple inverted pendulum and the effective spring constant
is described as

keff = kθ

L2 − Mg

L
(2.8)

2In general we should call TM only to the masses sensitive to GWs. However, in this thesis we call
the other mirrors as TM as well.
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where kθ is the spring constant of the flexure, M is the mass of the load and L is the
length of the leg. Usually, the weight of the leg, m, is negligibly small and the following
expression, m ≪ M , holds When M ≪ Mc, the IP is stable and the resonant frequency
is

ω0 =
√

g

L

Mc − M

M
, (2.9)

Mc = kθ/gL, (2.10)

where Mc is the critical mass.
The transfer function from the ground displacement to the payload displacement is [29]

HIP(ω) = A + Bω2

A − ω2 , (2.11)

A = keff

M + m
4 + I

L2

, (2.12)

B =
m
4 − I

L2

M + m
4 + I

L2

, (2.13)

where I is the moment of inertia about the center of mass of IP leg.

Figure 2.13: CAD Sketch of Pre-Isolator. 1) The top filter for vertical isolation, 2) the
coil-magnet actuator, 3) the Linear Variable Differential Transducer (LVDT), 4) the coil
support frame rigidly connected to the base ring, 5) the Inverted Pendulum (IP) leg, 6)
the base ring, 7) the motorized spring for the static position control of the top stage, 8)
thegeophone 9) the top stage isolated by the IP, 10) the magic-wand for compensating
CoP effect and 11) the arc–weight.

Geometric Anti Spring

To detect the GWs, one needs to design the suspension which can achieve vertical attenu-
ation performance comparable to that obtainable in the horizontal direction. In order to
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Figure 2.14: Sketch of Inverted pendulum.

achieve this, one must create a spring that satisfies the following requirements. The spring
constant must be small on the other hand, the spring must support a heavy mass around
hundreds of kilograms. The geometric anti spring (GAS) filter fulfills the requirement and
consists of a set of radially-arranged cantilever blades clamped on the base frame and to
the central disk called the keystone. The blade were flat when it was manufactured [29].
The other solution to the requirement is to use magnetic anti spring [29], which has been
implemented in the superattenuator for Virgo.

Fig. 2.16 shows the analytical model of GAS filter. Now, the payload with mass M
is suspended by a GAS filter with the horizontal spring constant kx, the vertical spring
constant kz. The angle between horizontal axis and horizontal vertical is defined as θ in
fig. 2.16. Then, the equation of z-axis motion is described as

Mz̈ = −kz (z − zeq) − kx (l − l0x) sin θ, (2.14)

where zeq is the equilibrium point, l is the actual length of the horizontal spring and l0x

is its natural length. From the Taylor expansion around equilibrium point, zeq, one can
get the linearized equation,

Mz̈ = −
[
kz −

(
l0x

x0
− 1

)
kx

]
(z − zeq) = −keff (z − zeq) (2.15)

where x0 is the horizontal distance between the central keystone and the support point
of the horizontal spring. From this, the resonant frequency is described as

ω0 =
√

keff

M
(2.16)

and this means the resonant frequency depends on the mass of the payload and we can
control the resonant frequency with ballast masses. Ballast mass is an additional mass
which helps to provide stability to a structure.
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Figure 2.15: CAD Sketch of Geometric anti-spring Filter. 1) The motorized spring for
initial positioning of the keystone (fishing rod / FR), 2) the baseplate, 3) the LVDT to
monitor the displacement of the keystone, 4) the base clamp, 5) the cantilever blade, 6)
the magic-wand for compensating CoP effect and 7) the keystone.

Figure 2.16: An analytical model of the GAS filter.
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The system becomes more sensitive to the temperature change as the resonant fre-
quency is reduced by the anti-spring effect and the displacement, ∆z, is described as

∆z = g

Eω2
0

∂E

∂T
∆T (2.17)

where E is the Young’s modulus of the spring material and ∆T is the shift of the tem-
perature [29]. And from this, the temperature in the tunnel should be kept the constant
±0.05 K.

Magnetic Damper

Fig. 2.17 shows the magnetic damper (MD) which is a structural damping for yaw motion.
Suspended permanent magnets and this MD attract by electromagnetic force.

Figure 2.17: Magnet damper rings on a standard filter cap.

Payload

Fig. 2.18 shows the structure of the BS payload. Note the coordinate of the suspension.
In this case, longitudinal element is described by z axis. Payload consists of optic, RM,
IM and IRM. TM is the main part of suspensions and most important parts. BS and
SRs mirrors are made of fused silica. TM is suspended by two piano wires which hold
the optic by looping underneath. There are four magnetic protrusions to actuate the
optic on its surface 3. They are controlled by moving them with the RM coil magnet
actuators. Because one can not attach a sensor to the TM, one checks its position by
using an external device, called Optical Lever (oplev). RM is a hollow cylindrical shape
that covers the TM, which is suspended by two tungsten wires.

When one think about the motion of a rigid body, one usually uses “Longitudinal”,
“Transverse”, “Vertical”, “Roll”, “Pitch” and “Yaw” in fig. 2.19. Usually z axis describes

3In the case of BS, the magnets are on the High Reflective (HR) side. On the other hand, in the case
of SRs, the magnets are on the Anti- Reflective (AR) side
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Figure 2.18: CAD pictures of the BS payload. 1) The OSEM unit, 2) the body of the
intermediate recoil mass (IRM), 3) the piano wires to suspend the mirror (the optics), 4)
the tungsten wires to suspend the recoil mass (RM) of the test mass, 5) the test mass
(TM), 6) the body of the intermediate mass (IM) and 7) the body of the recoil mass
(RM).

vertical element, but In this model, z axis describe the longitudinal (Beam axis) x axis
describes the transverse and y axis describes the vertical in fig. 2.19.

Figure 2.19: coordinate system

The IM is suspended by a single rod from the BF and the IRM is suspended by three
rods from the basement of the BF. The shape of the IM is rectangular parallelepiped with
two pico motors inside. By using these, delicate positioning and inclination adjustment of
IM is done first, but we don’t use these to do feedback control. There are 6 Optical Sensor
Electro Magnetic-actuator (OSEM) flags in the IM, and one can control the position with
the OSEMs in the IRM. The OSEM flag and the OSEM correspond one by one, and there
are six in total, three horizontal components and three vertical components. The IRM is
shaped like an empty box and is suspended so as to cover the IM from above.
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2.2.3 Sensor and actuator
OSEM

The OSEM in fig. 2.20 consists of a LED and a photo detector (PD). When the IM moves,
OSEM flags move as well and they change the amount of light that on the PD receives.
From calculating this, one can get the position and tilt information of the IM.

Figure 2.20: CAD pictures of the OSEM

Optical Lever

An Optical lever is a device which detects the displacement of the TM position and its
tilt. In case of BS and SRs, the superluminescent diode is injected from the bottom and
then reflected by the TM, and finally reaches the quadrant photodiode (QPD) as shown
in fig. 2.21. When the mirror moves in longitudinal with displacement d, the beam’s
horizontal shift is

X = 2d sin α, (2.18)

where α is the incident angle on the mirror (See the left figure of fig. 2.22). When the
mirror rotates in yaw with angle δ, the angular displacement of the TM, θ is described as

θ = 2δ (2.19)

(See the right figure of fig. 2.22). From this, one can get the relationship between the tilt
and position of the mass and the laser shift as(

xf

θf

)
=
(

A B
C D

)(
xi

θi

)
, (2.20)

where the matrix is called “ABCD matrix” and usually the elements are characterized
by the focal length and distance between the mirror and the object. Furthermore, we
can separate the angle element and the length element theoretically, since no one can put
the mirror at 100% correct position, one needs to consider the misplacement. From the
comparison of the strength of light on QPDs, one can get the tilt information of the TM.
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Figure 2.21: Sketch of Oplev

Figure 2.22: Relationship between TM’s
motion and laser shift.

Figure 2.23: Type B suspension for BS. Figure 2.24: Type B suspension for SRs
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Figure 2.25: Cross section of BS in tank from front (−X, +Y)
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Figure 2.26: Cross section of BS in tank from side (+X, +Y)



3 Suspension model for VIS

3.1 Mathematical Model

3.1.1 Overview
When one wants to control a machine, one needs to build its mechanical model. In case of
a suspension, one needs to figure out the equation of motion. In general, there are three
kinds of model, this means “point mass model”, “rigid body model” and “elastic body
model” in fig. 3.1. A point mass model is used when one does not need to take the shape
of the object into account. When one think about the rotation of the Earth for example,
one need to consider the shape of the Earth. On the other hand, when one think about
the rotation of the Earth around the Sun, one does not need to consider the shape of
the Earth and one can regard it as a mass point. This is because the size of the Earth
is extremely smaller than that of the Sun. It is also useful for rough estimation of rigid
body or elastic body model because it is the simplest and easiest model. A rigid body is
a solid body in which deformation is zero or so small it can be neglected. So it includes
the information of its direction and its shape is invariant. An elastic body changes its
shape due to external force.

Figure 3.1: Simple diagram of three models.

A suspension model is build from a rigid bodies (orange ones) and elastic bodies (blue

27
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ones) in fig. 3.2. Suspended objects consist of TM, RM, IM, IRM, GAS filter, MD and
PI. Suspending objects consist of wires, rods and GAS springs.

The model was build by T. Sekiguchi and here is a list of what the suspension model
satisfies [30,31]

1. All the suspended objects are regarded as rigid bodies with up to 6 DoFs, and their
internal elasticity is not taken into account.

2. A wire is assumed to be a massless spring with stretching and torsional elasticity.
Since it is assumed to be massless, its violin modes are not taken into account.

3. The vertical spring (GAS filter) used in the model works as an ideal linear spring
with a spring constant and a single working-direction. The saturation of the atten-
uation performance due to center of percussion effect is considered.

4. The dissipation due to the internal friction of the elastic material is taken into ac-
count. Thence the spring constants of the vertical springs and wires have imaginary
parts with finite loss angles, which are assumed to be constant over all the frequencies
(structural damping).

Figure 3.2: Type B suspension model constitution

3.1.2 Coordinate system
The number of degrees of freedom a point mass in a three dimensional space is 3, but
in the case of the rigid body is 6 and this includes the position information (eg. x, y, z)
and tilt information (eg. θx, θy, θz). And now we use the same coordinate definition in
subsection 2.2.2.

Translational conversion is commutative conversion on the other hand, Rotation con-
version is non-commutative. That means for example, the rotation, in case of rotation
around xi axis and xj axis (i ̸= j) has two expressions but they are fundamentally differ-
ent, Rxi

(θxi
)Rxj

(θxj
) ̸= Rxj

(θxj
)Rxi

(θxi
). In this model, the rotation order is defined like

below and image is in fig. 3.3.
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Figure 3.3: the definition of rotation order. 1st. Rotate around x axis. 2nd. rotate
around y′ axis. 3. rotate around z′′. [29]

Since we use wires to hang the objects and wires are clamped on objects, it is convenient
to use a local coordinate (xl, yl, zl) which is fixed in the object. And here is the relationship
between the global coordinate (xs, ys, zs) and the local coordinate. xs

ys
zs

 =

 x
y
z

+

 cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 · (3.1)

 cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy


 1 0 0

0 cos θx − sin θx

0 sin θx cos θx


 xb

yb
zb

 , (3.2)

where (x, y, z, θx, θy, θz) is the position and the orientation of the suspended object.

3.1.3 Equation of motion of the suspension
One can get the equation of motion from Lagrangian. In case of this suspension, the
displacement from the equilibrium point is tiny so one can use the Taylor approximation
of Lagrangian, Lapr around the equilibrium point, xeq,

d
dt

∂Lapr

∂Ẋ
− ∂Lapr

∂X
= 0 (3.3)

Lapr(X) = L (Xeq) + ∂L

∂X

∣∣∣∣∣
X=Xeq

X + 1
2

∂2L

∂X2

∣∣∣∣∣
X=Xeq

X2. (3.4)

From eq. (3.3), the equation of motion is described as

M ẍ + Cẋ + K(x − xeq) = 0 (3.5)

M = (Mij) =

 ∂2T (x, ẋ)
∂ẋi∂ẋj

∣∣∣∣∣
x=xeq

 (3.6)

C = (Cij) =

 ∂2F (x, ẋ)
∂xi∂xj

∣∣∣∣∣
x=xeq

 (3.7)

K = (Kij) =

 ∂2U(x)
∂xi∂xj

∣∣∣∣∣
x=xeq

 , (3.8)
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Table 3.1: The potential for Type B suspension (SR)

potential term remarks

U

Uwires

1
2

ks(l − l0)2 ks = ES/l0

Uwiret

1
2

kt∆θ2
t kt = JG/l0

UGAS
1
2

M (2πf0)2 ∆h2 + Mg∆h -

Ugravity Mgy -

T
Ttra

1
2

M (ẋ2 + ẏ2 + ż2) -

Trot
1
2
ωT Iω -

F F
1
2

(ẋ1 − ẋ2)T C (ẋ1 − ẋ2) -

Table 3.2: parameters for lagrangian
symbol meaning

C suitable damping coefficient matrix
E Young’s modulus
f0 resonant frequency of GAS
G shear modulus

∆h
deviation of keystone of the GAS

from equilibrium position
I moment of inertia tensor

J
polar moment of inertia of

wire cross section

l
actual distance between
two attachment points

l0 natural length of the wire
M mass
S cross section of wire
x position
y position
z position

x1
position and orientation

of damper

x2
position and orientation

of conducting body
∆θ twist angle
ω angular velocity
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Table 3.3: The design parameter for Type B suspension (SR) from [30]
description symbol unit F0 F1 F2 IRM IM RM TM

body

mass M kg 474 90 90 12 16 13 10.7
momenta of inertia (x) Ix

kg m2
60 4 4 0.25 0.15 0.18 0.051

momenta of inertia (y) Iy 120 6.4 6.4 0.4 0.19 0.18 0.051
momenta of inertia (z) Iz 60 4 4 0.25 0.15 0.23 0.084

wire

number of wires n - - 1 1 3 1 4 4
material - - - margin steel C70 steel margin steel tungsten
density ρ g/cm3 - 8.0 7.8 8.0 19.3

Young’s modulus E Gpa - 195 200 195 411
Poisson ratio σ - - 0.3 0.3 0.3 0.28

loss angle ϕ - - 1 × 10−3 1 × 10−4 1 × 10−3 1 × 10−4

length L m - 1.3 0.56 0.56 0.56 0.56 0.56
length in sumcon m

diameter d mm - 2.1 1.6 0.3 0.85 0.6 0.2
diameter in sumcon mm

x position Dx mm - - - - - 10 5
z position Dz mm - - - - - 145 125

radial distance to y axis Dr mm - - - 150 - - -
upper clamp y positon Dyu mm - -5 5 0 -5 0 0
lower clamp y position Dyl mm - -5 5 0 -2 0 0

GAS
resonant frequency fGAS mHz 60 250 250 - - - -

qualiy factor QGAS - 3 6 6 - - - -
saturation level BGAS dB -60 -60 -60 - - - -

IP

radial distance to y axis RIP mm 600 - - - - - -
horizontal mode frequency fIP mHz 30 - - - - - -

qualiy factor QIP - 3 - - - - - -
saturation level BIP dB -70 - - - - - -
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Figure 3.4: The difference of ideal wire and real wire. Real wire has the breakoff because
of its rigidity.

where T is kinetic energy, F is dissipation function and U is the potential energy. M is
the inertia matrix, C is the damping matrix and K is the stiffness matrix. As a result,
one can get the linearized equation of motion.

From the definiton in subsection 3.1.1, the lagrangian consists of potential energies in
table 3.1, table 3.2 and table 3.3. As a result, one can get the transfer functions in all
DoFs from the linearized equation. This helps us to know the behavior in frequency space.
When one control the system, it is important to get the frequency response of the system.
With actuators and sensors, it is possible to actuate the system and get the displacement
of the system. The transfer function, Gij, from input i to output j is described as

Gij =
[(

−ω2M + iωC + K
)−1

]
ij

(3.9)

and one can get this function from the Fourier transform of the linearized equation,

M ẍ + Cẋ + K(x − xeq) = F (3.10)

which is eq. (3.5) with excitation term. When one wants a response from ground motion,
xg, one can use the transfer function [30],

G
(ground)
ij (ω) =

[(
−ω2M + iωC + K

)−1 (
ω2Mg − iωCg − Kg

))
]ij. (3.11)

3.1.4 Other Effects
In an ideal model, one can use the ideal wire which is massless and does not have the
effective bending point in fig. 3.4. When one clamps a wire, it has a breakoff, ∆ [34],

∆ =
√

EI

T
(3.12)

where E is the Young’s modulus, I is the second moment of area, and T is the tension of
the wire. The second moment of area is a geometrical property of an area which reflects
the amount representing easiness of deformation of a member with regard to an arbitrary
axis. In this case, Iy = πd4/64 where y is the axis which penetrates the wire from below.



4 Installation of SR3 and its feature

I have participated in the installation of all Type B suspensions , i.e. BS, SRM, SR2 and
SR3 with a team from NAOJ. In this chapter, I mention the feature of SR3 as an example
of a Type B suspension.

4.1 Installation of SR3

The summary of the installation process:
Fig. 4.1 shows the installation of the test mass. Before this phase, we put on four

permanent magnets for actuating on the mirror and attached four “wire breakers” to hang
with wires. In this phase, we set the TM to the nominal position in the assembly frame.
To do that, we used a rail on the assembly frame and slided the optic stand.

Fig. 4.2 shows the installation of the intermediate mass. By setting this, one can hang
the TM from IM.

Fig. 4.3 shows the installation of the recoil mass. Recoil mass can be divided into the
cap part and the body part. After hanging optic, one can cover the optic with the body
part of RM. After lid, we also hang the RM.

Fig. 4.4 shows the installation of the standard filter. Since the spring constant of GAS
filter depends on the hung mass, we used ballast masses to adjust the horizontal level and
the weight. Because GAS filter’s resonant frequency also depends on the payload mass,
we measured the tolerance range of the payload weight. Fig. ?? shows the result of SR3
BF and the plot draws a parabola around the extreme value.

Fig. 4.5 shows the installation of the Pre-Isolator. First, we calibrated the F0, LVDT
and after that we put it on the assembly frame.

Fig. 4.6 shows the hung SR3 to put into the chamber.
Fig. 4.7 shows the rack which includes coil drivers, analog digital converters, digital

analog converters and so on. Fig. 4.8 shows the way to accumulate data. All signal
go through this rack and then go to the real time machine in the calculator room. The
signal is then processed by DAQ computers and sends to the client PCs and data transfer
computers. The data transfer computer sends data to the storage system in Kashiwa
campus. Since KAGRA sends 20 MB/s, the storage in Kashiwa is 3–5 PB for 5 year data
[JGW-G1301945-v2].

33
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Figure 4.1: Installation of the optic. Figure 4.2: Installation of the intermediate
mass (IM).

Figure 4.3: Installation of the recoil mass
(RM). Figure 4.4: Installation of the Standard Fil-

ter.

Figure 4.5: Installation of the Preisolator. Figure 4.6: Installation of SR3.
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Figure 4.7: This is a
rack for analog circuit
and digital system. Figure 4.8: Data pass from the interferometer to the storage.

4.2 Features of SR3

4.2.1 LVDT calibration

The LVDT is an electrical transformer used to measure the linear displacement and it’s an
abbreviation of “Linear Variable Differential Transformer”. One important feature of an
LVDT is its friction-free operation and thanks to that, it can measure its infinitesimally
small changes in the core position [32].

Figure 4.9: Position relation of GAS
blades, geophones, LVDTs, actuators
and stepper moters

Figure 4.10: Upper part of PreIsolator
for SR3

PI

Fig. 4.11 shows the calibration result of SR3 IP LVDTs and table 4.1 shows their cali-
bration factors and linear range. These data are used to convert the value from count to
displacement in the control computer. Details are in chapter ??
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Figure 4.11: LVDTs calibration for SR3 IPs

Table 4.1: Calibration factor and linear range of LVDTs for SR3 IPs
sensor calibration factor linear range

LVDT H1 0.262 µm/cnt 7 mm – 17 mm
LVDT H2 0.240 µm/cnt 8 mm – 17 mm
LVDT H3 0.253 µm/cnt 8 mm – 18 mm
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GAS

Fig. 4.12 shows the calibration result of SR3 GAS LVDTs and table 4.2 shows their
calibration factors and linear range. Every LVDT has enough linear range and the plots
are not shifted significantly from the approximate line.

Figure 4.12: LVDTs calibration for SR3 GAS

Table 4.2: Calibration factor and linear range of LVDT for SR3 GAS
sensor calibration factor linear range

LVDT F0 0.262 [µm/cnt] 68.0 mm – 76.0 mm
LVDT F1 0.240 [µm/cnt] 63.5 mm – 68.0 mm
LVDT F2 0.253 [µm/cnt] 64.0 mm – 66.5 mm

OSEM

Fig. 4.13 shows the calibration result of SR3 GAS LVDTs and table 4.3 shows their
calibration factors and linear range. The liner range of OSEM No. 58 is smaller than
those of other OSEMs. However it has 10000 count liner range and the result is sufficient.
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Figure 4.13: OSEM Calibration

Table 4.3: Calibration factor and linear range of LVDT
number position calibration factor linear range
No. 53 IM V1 78.99 nm/cnt 6.3 mm – 7.2 mm
No. 54 IM V2 79.01 nm/cnt 6.2 mm – 7.2 mm
No. 55 IM V3 83.25 nm/cnt 6.4 mm – 7.3 mm
No. 56 IM H1 74.35 nm/cnt 6.4 mm – 7.4 mm
No. 57 IM H2 70.76 nm/cnt 6.4 mm – 7.4 mm
No. 58 IM H3 88.71 nm/cnt 6.6 mm – 7.5 mm
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4.2.2 Transfer function
Fig. 4.14 shows the transfer function (TF) of SR3 IP. The top graph shows the magnitude
of longitudinal, second one shows the magnitude of transverse and the third one shows
the magnitude of yaw. The order of the resonant frequency is 0.1 Hz and it satisfies the
requirement. Fig. 4.15 shows the transfer function of SR3 GAS filters. Since important
part is around 1 Hz, one can ignore the part which is greater than 10 Hz. This is because
the ground vibration is small at high frequency. Fig. 4.16 shows the transfer function
of SR3 IM. Blue lines are the transfer functions without damping and orange one with
damping (only IM and IPs). In all DOFs, they are damped well. When a suspension
is touching, the Q factor becomes small. In this case, all transfer function have large Q
factor and it certifies that SR3 is well suspended.

Figure 4.14: Transfer function of SR3 IPs.
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Figure 4.15: Transfer function of SR3 GAS.

Figure 4.16: Transfer fucntion of SR3 IM.



5 Control System and Simulation

5.1 Control system of Type B suspensions
Fig. 5.1 shows the MEDM screen to control SR3 suspension. Simulink runs in the
background and controls the signal path.

5.1.1 Overview of Type B suspension feedback system
Fig. 5.2 shows the sketch of the feedback system of Type B. This is the active control
system and it has three main feedback loop, the IP loop (red), the GAS loop (Green)
and payload loop (Blue). The IP loop controls the static position of the top stage and
damps the pendulum mode. The GAS loop mainly controls the displacement because of
the thermal effect. The payload loop controls the structural resonance of the test mirror
and aligns the suspension optics.

5.1.2 Details of IM feedback system
Fig. 5.3 shows a cartoon of the feed back system of SR3 IM. The OSEM detects the
displacement of IM and then the signal passes through the Analog to Digital Converter
(ADC) and becomes the digital signal. In the digital world, the signal is changed its
format by the input matrix and then it is injected as an input signal to the control filter.
The control filter injects the output signal and it is changed its format by the output
matrix. After that, the signal passes through the Digital to Analog Converter (DAC) and
becomes the analog signal. Then the analog signal goes to the OSEM coil and the IM
gets the feedback signal and is controlled.

5.2 Control theory

5.2.1 Modern Control theory
Classical control is a control system which deals with the performance of the dynamical
system. Classical control theory is the one–input one–output system and evaluates the
frequency response of the system. On the other hand, Modern control theory uses the first-
order ordinary differential equations called state equations. This state equation consists
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Figure 5.1: MEDM screen to control SR3

Figure 5.2: Feedback cycle of suspension. [29]

Figure 5.3: Feedback cycle
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Figure 5.4: Typical control system in a state space representation.

of inputs, outputs and internal states of the system. Fig. 5.4 shows the typical control
system in a state space representation. The state equation of this system is described as{

ẋ = Ax + Bu
y = Cx + Du

, (5.1)

where u is the input signal vector, y is the output signal vector, x is the internal state of
the system vector, A is the state matrix, B is the input matrix, C is the output matrix
and D is the feedthrough matrix. For example, the equation of motion of the 1 degree of
freedom vibration system in fig. 5.5 is described as

mẍ + kx = F, (5.2)
and this equation is also described as

Figure 5.5: single spring vibration system
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ẋ =

(
0 1

−km−1 0

)
x +

(
0

m−1

)
F

y =
(

1 0
)
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ẋ
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In general, when B is a n × 1 matrix and C is a 1 × n matrix, by Fourier transform
of state equation, the transfer function of the system G(s) is described as 1

G(s) = c(sI − A)−1b. (5.6)

ABCD matrices also describe the time response of this system,

x(t) = eAtx0 +
∫ t

0
dτeA(t−τ)Bu(τ), (5.7)

where x0 is the initial position.
As a conclusion, the ABCD matrices include the information of the system and one

can build the model in the state space.

5.3 Model in State Space
In this section, we discuss the SR3 IM Yaw. Yaw is an important degree of freedom. This
is because BS separates the injected beam and 1 µrad Yaw motion changes the beam spot
at the end test mass 3 mm. Yaw motion control is also important for SRs because SRM
has a small mirror and the alignment requirement becomes severe. Furthermore since
Yaw motion has less coupling, it is good and easy to check its behavior first.

5.3.1 Transfer function
To measure the transfer function, I used Fast Fourier Transform (FFT) with an application
from LIGO, called Diagnostics Test Tools (DTT) which can be seen in fig. 5.6 [33].

The transfer function of SR3 IM Yaw to IM Yaw is shown in fig. 5.7. The peak around
0.1 Hz is from the lack of magnetic damping from the MD to the top filter.

So one can change the magnitude of the peak from the strength of the magnetic damper
and change the resonant frequency by changing the stuff value like the width and length
of the suspending wire.

5.3.2 Time series
Fig. 5.8 shows the time series of SR3 IM Yaw step response. The injected step function to
SR3 IM Yaw was 1000 counts in KAGRA. Because of the system, the injection is not the
ideal step function, it has non-neglectable rise time. However, the tilt of the IM changed
immediately. Until 20 seconds, it matches but after that, the amplitude of the simulation
in Matlab becomes smaller and the frequency drift a little. One possibility of mismatch
is the different Q factors between measured data and simulation. The frequency until 20
seconds is 0.1567 Hz and after that, the frequency drifts to 0.1343 Hz. In this phase, it is
not easy to evaluate the result quantitatively because now Type B suspensions have just
been installed and are going to be more and more characterized and also diagonalized
different DoF at the IM and IP stages to meet the requirements.

1 According to the custom, a n × 1 matrix and a 1 × n matrix are described by small letters.
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Figure 5.6: DTT is an application which can measure the transfer function and time
series. The result is the transfer function of SR3 IM Yaw. The upper left graph shows
the magnitude of the transfer function. The upper right graph shows the phase of the
transfer function. The lower graph shows the coherence of the transfer function.

Figure 5.7: The transfer function of SR3 IM Yaw (input) to IM Yaw (output).
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Figure 5.8: The comparison of time series of SR3 IM Yaw (input signal is step function).



6 Summary

I made significant contributions to the installation of all the type B suspensions which
are critical building blocks of KAGRA. Since not only the type B but also the rest of
the suspensions are installed in KAGRA today, KAGRA is now ready for the subsequent
commissioning tests which then make it operational. Observation 3 (O3) is an upcoming
joint observing run by four detectors, LIGO (Hanford and Livingston), VIRGO and KA-
GRA. In the nominal plan, O3 starts from this April with three detectors, namely LIGO
(Hanford and Livingstone) and VIRGO. Subsequently, KAGRA is going to join O3 from
the second half of this year.

While no one is allowed to actively test the suspensions in KAGRA during O3, we need
to start considering the upgrade for Observation 4 (O4) with the existing instruments.
Therefore, it is useful to build a model of suspensions in state space so that one can
simulate and/or update the model of suspension even during O3.

I built a model for one of the mechanical degrees of freedom, namely yaw in the
IM stage, of SR3 in state space. The model was able to successfully reproduce actual
behavior of the suspension in time domain when a step excitation force was applied
to the IM yaw. However, the simulated data also showed discrepancy from the actual
behavior after 20 seconds elapsed. This seems to be due to the fact that they are not yet
fully characterized nor diagonalized completely. This suggests that we need to work more
on the characterization of the system in order to fully exploit the state space approach.

Future works include the expansion of the model to include the rest of degrees of
freedom, incorporation of cross-couplings between various degrees of freedom, precise
system identification and so forth. These will make the model applicable to various
experiments and thus useful.

My study presented in this thesis is essential not only for accelerating the installation
activities in KAGRA, but also for advancing the suspension design which is a key for the
gravitational wave detectors.
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