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Abstract

In 1915, A. Einstein published General Relativity as a theory of the relationship between
spacetime and matter [1,2]. He predicted the existence of gravitational waves as one of the
consequences of general relativity. In 2015, LIGO (Laser Interferometer Gravitational-
Wave Observatory) directly detected the gravitational wave event from a binary black
hole (BH) merger for the first time [3]. This event not only served as a verification of
Einstein’s general relativity theory but also turned to be a major discovery of the first
direct observation of BHs. It is the beginning of gravitational wave astronomy.

My research focuses on two independent topics. One is on installation work for a
gravitational wave detector and the other is on mathematical model of a suspension
which is a critical piece for gravitational wave detectors.

In Japan, a gravitational wave detector called KAGRA is currently under construction.
KAGRA is different from other gravitational wave detectors in that it is in the basement
and it uses cryogenic mirrors. All mirrors in KAGRA are suspended to isolate vibration
and they designed mainly three kinds of suspensions; Type A, Type B and Type Bp. 1
installed Type B suspensions which hang the Beam Splitter (BS) and the Signal Recycling
Mirrors (SRs) in cooperation with the NAOJ staff.

Measuring the actual transfer function is a good way to know the feature of the
suspension in frequency space. However, when we start an observing run, we cannot use
the real suspension in KAGRA. So it is significant to build a model in state space. In state
space, one can use ABCD matrices which includes the information of suspensions. And
from this, one can simulate the transfer function and frequency response without using
real one. To know the time series of suspension, A. Shoda, Y. Fuji and I implemented
the state space to control the suspension. To build the model, we used Matlab and
Mathematica.

To check the behavior of time series, I checked the Yaw motion of SR3 intermediate
mass (IM) because the Yaw has less coupling and it was expected to act better than other
degree of freedoms. The SR3 IM Yaw time series of the step response matched for the
first 20 seconds.
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Detection of Gravitational Waves

1.1 Gravitational Waves

Gravitational waves, which propagate at the speed of light, are distortions of spacetime,
which were predicted by Albert Einstein using his theory of General Relativity in 1916.

In 1687, I. Newton published “Philosophisze Naturalis Principia Mathematica” and
this was the origin of what is known as “Classical Mechanics”. In this theory, space, time
and matter are independent of each other. The relationship between the gravitational
potential ¢ and matter was described as

A¢p = 4nGp,

where GG is the Newtonian gravitational constant and p is the density of matter. For
example, in the case of a point mass of magnitude M at a displacement r, i.e. p = MJ(r),
the potential of the distribution: ¢ is

o=-G2L
r

In 1915, A. Einstein published General Relativity as a theory of the relationship be-
tween spacetime and matter [1,2]. In this theory, we consider 4 dimensional spacetime
z# = (ct,x,y,2) as a manifold and we call a coordinate a “world point”. The interval
between two world points ds is described as

ds® = gudatda”,

where g, is a metric tensor.
In general relativity, space, time and matter interact and their relationship is described
as

G = %Tw, (1.1)

A
where G, is the Einstein tensor, which includes the information about spacetime and
T, is the stress-energy-momentum tensor which includes the information about matter.

In 1916, Einstein predicted the existence of gravitational waves from eq. (1.1) [4].
Gravitational waves are ripples in time-space. In a case of a weak gravitational field, we
can use a metric like

I = Nuv + h,ullu ‘h,m/| < 1. (1.2)
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By substituting eq. (1.2) in eq. (1.1), we can get the linearized Einstein equation:

Oh,, = —HSCZGTW. (1.3)
When T}, =0, eq. (1.3) becomes
Oh,, =0, (1.4)
whose solution is
hu = A expliwg(t — z/c)), (1.5)
0 O 0 0
Ay = 8 Zi —hfl 8 , (1.6)
0 O 0 0

where w, is the angular frequency of the GW and h and hy are called the amplitudes of
the “plus” and “cross” polarizations of the GW. From eq. (1.5) we see GWs propagate at
speed of light and from eq. (1.6) we see they have two independent polarization modes.
Fig. 1.1 is an image of “Plus mode” and “Cross mode”.

PLUS-MODE

PHASE

CROSS-MODE

Figure 1.1: Polarization modes of gravitational waves

When a mass accelerates, it emits GWs. Because of the conservation of energy, GWs
don’t emit a monopole. And because of the conservation of momentum and angular
momentum, GWs don’t emit a dipole. From the quadrupole approximation, the amplitude
of the gravitational wave is calculated as [5]

2G

ey

Qij, (1.7)

where R is the distance between the source of gravitational waves and the observer and
(s is the quadrupole moment of the mass distribution.
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1.1.1 Sources of Gravitational Waves

Compact Binary Coalescence (CBC)

Compact Binary Coalescence is an coalescence event like black hole (BH) — BH and
neutron star (NS) — NS. Advanced LIGO (aLIGO) first detected GWs from a BH-BH
binary beyond ~400 Mpec [3]. alLIGO and Virgo also detected GWs from a NS-NS binary
[?]. Up to now, 11 CBC events has been detected [6]. Other strong possibilities are
GWs from BH-NS binary [7] but they have not been detected yet. Typical estimated
maximum amplitude is h ~ 1072 and estimated frequency before is f = 3/ (765G M) ~
4.4x103/(M /M) Hz, where M is the total mass of CBC and M, is the mass of the sun [9].
In this case, since the wave-form is predicted from Post-Newtonian approximation and
numerical simulation, we can use a matched filter which helps to get gravitational wave
signal efficiently from noise. With second generation GW detectors: alLIGO, AdVirgo
and KAGRA, several or dozens of detections are expected per year [8].

Supernova (SN)

When a supernova occurs, if the core of the star is asymmetric, it produces gravitational
waves. Unlike a CBC, it is difficult to predict the waveform of gravitational waves emitted
by a supernova explosion. Because of this, we cannot use a matched filter to find a signal
from a detector in this case. On the other hand, the frequency of supernova explosions is
higher than that for CBCs. The estimated GW frequency is around 1 kHz [10].

Pulsar

A pulsar is a highly magnetized rotating neutron star or white dwarf that emits a beam
of electromagnetic radiation [11]. If a pulsar is asymmetric, it emits gravitational waves.
Especially, millisecond pulsars whose rotation period are between 1 ms and tens of ms
emit gravitational waves whose frequency are between about 10 Hz and 1000 Hz. GWs
from pulsars are weaker than those from CBCs.

Others

Other sources are Gamma-Ray Bursts (GRB) source, Low-Mass X-ray Binaries (LMXB),
Soft Gamma (-ray) Repeaters (SGR) and the Gravitational Wave Background (GWB).
GWs from these sources have not been detected yet. table 1.1 classifies the types of GWs
by predictability and duration.

Table 1.1: Type of GWs

Waveform Short time Long time
Predictable ~ CBC, GRB source pulsar, LMXB
Unpredictable SN, SGR GWB
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1.1.2 Detection of Gravitational Waves

In 1974, R. A. Hulse and J. H. Taylor proved the existence of gravitational waves indirectly

and won Nobel prize in 1993 [12,13]. They showed that their data fit the equation in fig.
1.2 from General Relativity:

. 1927 GP/? _ -
P, =— ﬂis (P,/27) 53 (1 _ 62) 7/2
be (1.8)
X (1—|—7362+ 3764>m me (my, +me)
247 96 e e

where P, is the orbital period , e is the eccentricity, m, is the pulsar mass and m. is the
companion mass.

In 2015, LIGO (Laser Interferometer Gravitational-Wave Observatory) achieved the
first direct detection of gravitational waves, which were from the merger of a 36750
BH and a 297{M, BH. The final BH mass was 627{Mg, with 3.0702Myc? radiated in
gravitational waves [3]. Fig. 1.3 shows the time series of the amplitudes of the GW.
For this achievement, R. Weiss, B. C. Barish and K. S. Thorne won Nobel prize in 2017.
Especially interesting is the event GW170817, which was the first detected merger of two
neutron stars and the first multi-messenger observation. First GWs were detected and
estimated the rough location of the source on the celestial sphere. Using this estimation,
many radio telescopes detected the astronomical event.
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Figure 1.2: Orbital phase residuals. Figure  Figure 1.3: LIGO’s first direct detection of
taken from Ref. [13] GWs. Figure taken from Ref. [3]

1.2 Gravitational Waves Telescopes

1.2.1 Resonant Mass Antennas

J. Weber made an attempt at detecting gravitational waves in 1960s [14]. He made a
series of resonant mass antennas, nowadays called “Weber bar.” The equation of motion
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of a Weber bar is

Wo

Q

where g is the Lamé parameter, wy is the normal frequency, ¢ is a distance between
arbitary two points in the bar, () is the mechanical quality factor and fgw is the tidal
power from the GW [15]. When a GW whose frequency is very close to the resonant
frequency of the bar passes by, the bar oscillates in a normal mode. However he never
observed GWs.

p <£"+ £+w§£> = faw(?), (1.9)

1.2.2 Interferometeric Detectors

Because of the resonant mass antennas’ narrow observable frequency band, a laser in-
terferometric detector is mainstream in these days. Here is an image of a Michelson
interferometer with the mirrors suspended by wires in fig. 1.4. The principle of the de-

z
w'
X
/
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PHOTO DETECTOR

MIRROR

e
—
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BEAM SPLITTER

LASER Vs, Ies

Figure 1.4: A Michelson Interferometer. Figure taken from Ref. [16]

tection of GWs is as follow. An incoming coherent beam is split at Beam Splitter (BS),
one beam passes straight and the other beam turns 90 degrees. Both beams are reflected
by the end mirrors, go through the BS again and thence to the entrance port and a photo
detector. When GWs pass the interferometer, the arm lengths change as

Alm 1 l‘r i —z/c 1 ly iwe(t—2z/c
( Ay ) = She < v )e”’g(t /)+§hx ( iz >e s(t=2/c) (1.10)

and we can get the GWs information from the change of the laser’s phase at the photo
detector. The frequency response function from GWs to the Michelson interferometer is

20} si -

Hypr(wy) = =200 =i, (1.11)

Wg

lwg
= 8 1.12
T= (1.12)

and when

T
= _ 1.13
7=3 (1.13)
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satisfied, in other words when w, ~ 100 Hz and [, = [, ~ 750 km for example, |Hyi(wg)|
is maximized. However it is impossible to build a 750 km arm length interferometer
for the Earth is a sphere. There are two main solutions to this problem: using Fabry-
Pérot cavities and delay lines in the arms. Here is an image of Fabry-Pérot Michelson
interferometer which is shown in fig. 1.5. To increse the optical path length, we set a

FABRY-PEROT ‘\|7/'
% ) x

BEAM
SPLITTER

FABRY-PEROT

PHOTO
DETECTOR

0 ANTI-SYMMETRIC PORT

Figure 1.5: A Fabry-Pérot (FP) Michelson Interferometer. Figure taken from Ref. [16]

mirror between the BS and the end mirror. Then, the beam reflects and makes many round
trips and creates a longer effective arm length interferometer. The frequency response
function of a FP Michelson interferometer is

o

Hypyi(wg) = WHMI(%)’ (1.14)
2

o lire (1.15)

—rp+ (rd +t3)rg’

where €2 is the angular frequency of the laser, ¢ is the reflectance of the FP cavity’s front
mirror, rg is the reflectance of the FP cavity’s end mirror, and ¢g is the transmittance of
the FP cavity’s front mirror.

Furthermore, to recycle the laser beams which head to the beam port and the photo
detector, we set Power Recycling mirrors and Signal Recycling mirrors. The principle
is from an application of Michelson interferometer. Fig. 1.6 is an applied version of
Michelson interferometer: a Dual-Recycled Fabry-Pérot Michelson Interferometer.

—

g
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MIRROR PLITTER SIGNAL
LASER RECYCLING

MIRROR PHOTO
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Figure 1.6: A Dual-Recycled Fabry-Pérot (DRFP) Michelson Interferometer. Figure taken
from Ref. [16]
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Figure 1.7: Typical measured seismic motion of outside of Kamioka mine. Figure taken
from Ref. [17]

1.2.3 Noise source

Seismic Noise

Except duaring an earthquake, in everyday life we seldom feel ground vibrations; however
it always vibrates with very small amplitudes. Because of this, when one builds an
interferometer on ground, one cannot avoid an effect from seismic noise. It is well known
that seismic spectrum is roughly proportional to f=2. In fact, the power spectrum in
Kamioka [17] which is shown in fig. 1.7 is more or less described as

1 -9
Tseis = ;2 m/vHz f>0.1 Hz. (1.16)

Because the seismic motion is larger than the requirement of KAGRA, we need the
vibration isolation system.

Thermal Noise

Since an interferometer is always in contact with a finite-temperature thermal reservoir,
the component always vibrate thermally. Especially, the vibration of mirrors (both mirror
part and coating part) changes the optical path length, so we need to reduce this [18].
Thermal noise is generally described by the Fluctuation Dissipation Theorem. There are
two kinds of damping, one is a viscous damping and the other is structural damping. The
viscous damping is from residual gas in a chamber and its spring constant is real number.
On the other hand, the structural damping is related with the internal structure of the
suspension and its spring constant is complex number. When we have a viscous damping,



8 CHAPTER 1. DETECTION OF GRAVITATIONAL WAVES

the power spectrum of thermal noise is described by [19]

o 4kBT wWo
Galw) = mQ (w? — wd)’ + wiw?/Q?’ (1.17)
Gy(w) ~ :ﬁ%g o O (w < wy), (1.18)
G (w) =~ 4;35;% o< f (w>w), (1.19)
f=2mw, (1.20)

where kg is Boltzmann’s constant, 1" is temperature, m is the mass of the component,
Q@ is Q factor, wy is the resonance angular frequency. On the other hand, when we have
structural damping, the power spectrum of thermal noise is

4]{33T w%

Gy(w) = , 1.21

) mQw (w? — wd)”® + wi/Q? (121

4kpT 1

Ga(w) ~ m;Q; o f (W wy, @ > 1), (1.22)

0

AkpTw? 1

Golw) = ;’;Q“’O S0 W wQ> ). (1.23)

Laser Noise

There are many kinds of laser noises: frequency noise, scattering noise, radiation pressure
noise and intensity noise. The most problematic noise is the frequency noise. When the
phase difference is dv(w) in a Fabry-Pérot cavity, the noise is [20]

5¢£“FP)M1 = ECMRR/_ Hg)(w)&/(w)ei”tdw, (1.24)

where ecygrr is the Common Mode noise Rejection Ratio. To stabilize the frequency, it is
common to use another Fabry-Pérot as a frequency reference device. However, since the
main interferometer itself is most sensitive to the frequency noise, we can also use it to
feedback its signal as well.

Gas Noise

Since molecules in the air have some finite size, the higher the number density, the more
the laser is scattered. Furthermore, when there are molecules on the optical path, the
refractive index changes and as a result, the optical path length changes. The mean square
of the optical pass length difference noise is described as [21]

2 p
<5x >o< n FoTo (1.25)
L
522 = 4v/2ramM? p(2) d 1.2
(02%) = 4v/2ma "”mol/o Praser (2) { ks Tys (2)} 3/2° (1.26)
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where n is the number density, p is the pressure, T, is the temperature of the gas, o
is the polarizability of the molecule, m, is the mass of the molecule, L is the baseline
length of the interferometer, and s is the radius of the laser. To prevent this, the
pressure in a duct in KAGRA is kept at 1077 Pa.

1.2.4 Interferometric Detector Projects

The development of laser interferometric gravitational wave detectors started in the early
1970s [22,23]. At first, several groups tried to build interferometric detectors a few dozen
meters in length. As of now there are three km-class interferometer detectors. Table 1.2
summarizes GW detectors around the world.

Table 1.2: Project

Project Baseline length ~ Type state
aLIGO! 4 km ground online
AdVirgo 3 km ground online
KAGRA 3 km ground under construction
GEO600 600 m ground online
TAMA300 300m ground  built but offline
Einstein Telescope 10 km [24] ground under study
Cosmic Explorer 40 km [25] ground under study
LISA 2,500,000 km space  under construction
DECIGO 1,000 km space under study

1.2.5 KAGRA

KAGRA is an interferometric detector which is under construction in Japan. It is designed
to detect the coalescence signal of binary NS at a distance of ~250 Mpc with SNR=10
when the sources are at the optimal orientation with respect to KAGRA at the time of
the event [26]. There are two characteristics of KAGRA. One is that it is constructed
underground. This is because the seismic noise underground is 1072 times smaller than
ground noise in range 1 — 100 Hz [17]. The other is that four key mirrors (two front

mirrors and two end mirrors) are cryogenic. Here is the target sensitivity of bKAGRA in
fig. 1.8.

In the USA, there are two gravitational wave detectors: LIGO(Hanford) and LIGO(Livingstone).
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Figure 1.8: Target sensitivity curves of KAGRA. Taken from [27]



Vibration Isolation System for KAGRA

2.1 Vibration isolation Pendulum
2.1.1 Vibration Isolation due to a Pendulum

Transfer Function

102 J
L e N
©
=
l Xo 1072
1074
1072 107! 10° 10!
Freq. / Hz

lx

Phase / rad
o

Figure 2.1: Spring pendulum

1072 107t 10° 10t
Freq. / Hz

Figure 2.2: Spring pendulum

In order to isolate a system from seismic vibration, one can use mechanical filter with
elastic components, such as springs and pendulums. To understand how the mechanical
filter works, let us consider a simple example, a dimensional spring with a mass attached
as shown in fig. 2.1. The equation of motion of this system is,

mi = —k(z — x), (2.1)

where m is the mass of the pendulum, x is the position of the mass, x( is the ground
position and k is a spring constant. Note that both x and zy are time-dependent vari-
ables. By the Fourier transform of this equation of motion and adjusting the appropriate
constants, we can get the transfer function of this pendulum,

H(f) = af;(];)) =1 —1f2’ (2.2)

11

102
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where fo = 2m\/k/m is the resonant frequency. Fig. 2.2 shows the Transfer function of eq.
(2.2) where fo = 1 Hz. When the frequency is much lower than the resonant frequency,
f < fo, H(f) is a constant, and when the frequency is much higher than the resonant
frequency, f > fo, the magnitude of H(f) rolls off proportionally to f~2. From these
characteristics, we can reduce the vibration. On the other hand, when f ~ fy, the motion
of the mass is amplified exceedingly.

Transfer Function

104
o Y
— 10 :

10-2 — n=1

ln g ) n=2 \

105+ —— n=3
l — n=4
n 10-¢8 T
102 10! 10° 10t 102
Freq. / Hz
. n
.
.
< T2
o
P
l 0
n 2
Q- -n/2
— ajn B
102 10! 10° 10t 102
Freq. / Hz

Figure 2.3: n stages pendulum
Figure 2.4: TF of n stages pendulum

A n stages pendulum has n resonant frequencies and when the frequency is larger
than the maximum resonant frequency, the magnitude of H,(f) decreases in proportion
to f72" (See fig. 2.3 and fig. 2.4).

2.1.2 Passive Damping

Pendulum reduces the vibration only when f > f;. On the contrary, the amplitude is
amplified in the vicinity of the resonance frequency. By using a damping filter, one can
reduce the magnitude of the test mass around resonant frequency. The easiest example
is to consider the velocity term in a pendulum. There are mainly two damping system,
one is “Passive Damping” and the other is “Active Damping”.

Fig. 2.5 is a damped pendulum and its EOM is

mi = —k(x — xo) — (& — 2p), (2.3)
where v is the damping coefficient of the damper. The TF of eq. (2.3) is

142w/
1+ 2in (w/wo) — (w/wo)*’
n = v/2mwo, 2
w=2rf, (2.6)

H(w)
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Transfer Function
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Figure 2.5: viscous damped spring pendu-
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where 7 is the damping ratio, w is the angular frequency. A quality factor of the resonance
below is a good parameter to check the characteristics of the pendulum,

1

and fig. 2.6 shows the transfer function of the pendulum at each ). When the frequency
is higher than Q fy, the magnitude decreases in proportion to f~1.

The other passive damping which is called “flexible damping”, is to use the other
spring and mass in fig. 2.7. With flexible damper, one can decrease the magnitude in
proportion to f~2 without poles. Table 2.1 is a table of characteristics of damping.

Transfer Function
102

T
—— No damping
with fixed damper

10° —— Flexible damping |

Mag./

1072

1074
107! 10° 10! 102

Phase / rad
o

107! 10° 10! 102
Freq. / Hz

Figure 2.7: flexible damped spring pendu-

lum

Figure 2.8: TF of flexible damping

An example of passive damping is an eddy current damping system which is used in
KAGRA as well. Eddy currents are loops of electrical current induced within conductors
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Table 2.1: characteristics of suspenson

Type ‘ No damping Fixed damping Flexible damping

magnitude _9 ~1 -2
at high freq. </ <[ o f

by a changing magnetic field in the conductor due to Faraday’s law of induction. For
instance, when a permanent magnet moves parallel to a metal plate like aluminum and
copper, the relative velocity between the magnet and metal plate decrease.

2.1.3 Active Damping

Passive damping filter like an eddy current damper’s performance depends on the relative
velocity of the magnet, that is it depends on the frequency of the suspended masses.
Since multi stages suspensions have many different resonant frequency, a passive damping
is not universal for damping systems. Furthermore, suspension systems with eddy current
dampers suffer from severe thermal noise at high frequencies, therefore it is completely
impossible to use them near the optics. In that case, one can use “active damping”.

In active damping, one can use feedback signals to damp the systems. Thanks to
this damping, one can control the frequency response and tune flexibly by designing
servo filters. So when one has set enough amount of sensors and actuators, it is possible
to control the system in all translational and rotational degrees of freedom. In other
words, the quality of servo filters is the key of active damping. If the servo filter is
designed insufficiently, it would not send the correct signals to actuators, sensors and
electric circuits. That’s why one needs to be careful when we design servos.

2.2 Suspension system in KAGRA

In KAGRA, there are mainly three kinds of suspensions. These three kinds of suspensions
are for the large optics. There are smaller optics with smaller suspensions. Fig. 2.9 shows
the sketch of KAGRA and fig. 2.10 shows the sketch of suspensions. One is called “type
A suspension”, another is called “type B suspension” and the other is called “type Bp
suspension”.

Four type A suspensions are installed as Fabry-Pérot cavities and they consist of “type
A tower” for vibration isolation and “cryogenic payload” for cooling the mirrors. Since the
required sensitivity of input mirrors and end mirrors in fig. 2.11 are 10~3 times smaller
than that of type B suspension, type A suspension has 5 GAS filters and its total height
is 13.5 m. GAS’ s details are written in subsection 2.2.2.

Type B suspensions are used for the beam splitter and the signal recycling mirrors.
Details are in subsection 2.2.1. Type Bp suspensions are smaller versions of type B suspen-
sions! and installed as power recycling mirrors. Table 2.2 shows the basic specifications
of suspensions.

'Type Bp’s “p” is from “prime”.
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Figure 2.9: Sketch of KAGRA [2§]
Table 2.2: Suspensions in KAGRA
Type A Type B Type Bp
Suspended Optics ™ BS, SRM, SR2, SR3 PRM, PR2, PR3
Number of horizontal stages | 9 (included IP) 5 (included IP) 3
Number of vertical stages 6 3 2

Payload temperature

cryogenic (~20 K)

room temperature

room temperature
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Figure 2.10: Sketch of Suspensions [29].
10-10 The requirement for each suspension
T
- Power Recycling mirror (Type Bp)
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Figure 2.11: Requirement of each suspension. Data is from [?].
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2.2.1 Overview of Type B suspension

Fig. 2.12 shows the structure of SR3 suspension. In KAGRA, there are one BS and three
SRs (SR3, SR2 and SRM). Fig. 2.23 and fig. 2.24 are CAD figures of BS and SRs in
KAGRA. A Type B suspension is configured from a payload, GAS Filter chain and Pre-
isolator. A payload is configured from Test Mass ? (TM), Recoil Mass(RM), Intermediate
Mass (IM), Intermediate Recoil Mass (IRM) [See subsection 2.2.2]. GAS Filter chain
is configured from Bottom Filter (BF) and Standard Filter (SF) [See subsection 2.2.2].
Pre-isolator (PI) is configured from Inverted Pendulums (IP) and Top Filter (TF) [See
subsection 2.2.2 and subsection 2.2.2].

Inverted Pendulum

Standard Filter (F1

Bottom Filter (F2)

Intermediate
Recoil Mass

Figure 2.12: Details about SR3 suspension.

2.2.2 Configuration of Type B pendulum

Inverted Pendulum

Pre-isolator in fig. 2.13 comprises an inverted pendulum (IP) with three legs and a GAS
filter. IPs support the suspension and it is the only object touching the ground. They
reduce the amplitude of seismic vibration at the microseismic peak frequency (0.2-0.5 Hz).
Fig. 2.14 describes a typical simple inverted pendulum and the effective spring constant
is described as

ke Mg

kg = —2
LA PR

(2.8)

2In general we should call TM only to the masses sensitive to GWs. However, in this thesis we call
the other mirrors as TM as well.
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where ky is the spring constant of the flexure, M is the mass of the load and L is the
length of the leg. Usually, the weight of the leg, m, is negligibly small and the following
expression, m < M, holds When M < M., the IP is stable and the resonant frequency
is

gM.—M
L M
M, = kq/gL, (2.10)

Wy = (29)

where M, is the critical mass.
The transfer function from the ground displacement to the payload displacement is [29]

A + Buw?
HIP(CU) A—(,QQ 5 (211)
A= k;ﬁ - (2.12)
M+7%+ 15
m I
B=—_4_1* (2.13)

Figure 2.13: CAD Sketch of Pre-Isolator. 1) The top filter for vertical isolation, 2) the
coil-magnet actuator, 3) the Linear Variable Differential Transducer (LVDT), 4) the coil
support frame rigidly connected to the base ring, 5) the Inverted Pendulum (IP) leg, 6)
the base ring, 7) the motorized spring for the static position control of the top stage, 8)
thegeophone 9) the top stage isolated by the IP, 10) the magic-wand for compensating
CoP effect and 11) the arc—weight.

Geometric Anti Spring

To detect the GWs, one needs to design the suspension which can achieve vertical attenu-
ation performance comparable to that obtainable in the horizontal direction. In order to
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Figure 2.14: Sketch of Inverted pendulum.

achieve this, one must create a spring that satisfies the following requirements. The spring
constant must be small on the other hand, the spring must support a heavy mass around
hundreds of kilograms. The geometric anti spring (GAS) filter fulfills the requirement and
consists of a set of radially-arranged cantilever blades clamped on the base frame and to
the central disk called the keystone. The blade were flat when it was manufactured [29].
The other solution to the requirement is to use magnetic anti spring [29], which has been
implemented in the superattenuator for Virgo.

Fig. 2.16 shows the analytical model of GAS filter. Now, the payload with mass M
is suspended by a GAS filter with the horizontal spring constant k., the vertical spring
constant k.. The angle between horizontal axis and horizontal vertical is defined as 6 in
fig. 2.16. Then, the equation of z-axis motion is described as

M3 = —k, (2 — zeq) — ku (I — lo) sin 6, (2.14)

where z,q is the equilibrium point, [ is the actual length of the horizontal spring and ly,
is its natural length. From the Taylor expansion around equilibrium point, z.,, one can
get the linearized equation,

Mz =— lkz — <l0x - 1) k‘x] (2 = Zeq) = ket (2 — 2eq) (2.15)

Zo

where 1z is the horizontal distance between the central keystone and the support point
of the horizontal spring. From this, the resonant frequency is described as

keff
M

(2.16)

Wy =

and this means the resonant frequency depends on the mass of the payload and we can
control the resonant frequency with ballast masses. Ballast mass is an additional mass
which helps to provide stability to a structure.
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Figure 2.15: CAD Sketch of Geometric anti-spring Filter. 1) The motorized spring for
initial positioning of the keystone (fishing rod / FR), 2) the baseplate, 3) the LVDT to
monitor the displacement of the keystone, 4) the base clamp, 5) the cantilever blade, 6)
the magic-wand for compensating CoP effect and 7) the keystone.

_Dy
fx ad

Figure 2.16: An analytical model of the GAS filter.
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The system becomes more sensitive to the temperature change as the resonant fre-
quency is reduced by the anti-spring effect and the displacement, Az, is described as

g OF
Az=—"—— 2.17
T EROT (217)
where E is the Young’s modulus of the spring material and AT is the shift of the tem-
perature [29]. And from this, the temperature in the tunnel should be kept the constant
+0.05 K.

Magnetic Damper

Fig. 2.17 shows the magnetic damper (MD) which is a structural damping for yaw motion.
Suspended permanent magnets and this MD attract by electromagnetic force.

Figure 2.17: Magnet damper rings on a standard filter cap.

Payload

Fig. 2.18 shows the structure of the BS payload. Note the coordinate of the suspension.
In this case, longitudinal element is described by z axis. Payload consists of optic, RM,
IM and IRM. TM is the main part of suspensions and most important parts. BS and
SRs mirrors are made of fused silica. TM is suspended by two piano wires which hold
the optic by looping underneath. There are four magnetic protrusions to actuate the
optic on its surface 3. They are controlled by moving them with the RM coil magnet
actuators. Because one can not attach a sensor to the TM, one checks its position by
using an external device, called Optical Lever (oplev). RM is a hollow cylindrical shape
that covers the TM, which is suspended by two tungsten wires.

When one think about the motion of a rigid body, one usually uses “Longitudinal”,
“Transverse”, “Vertical”, “Roll”, “Pitch” and “Yaw” in fig. 2.19. Usually z axis describes

3In the case of BS, the magnets are on the High Reflective (HR) side. On the other hand, in the case
of SRs, the magnets are on the Anti- Reflective (AR) side
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Figure 2.18: CAD pictures of the BS payload. 1) The OSEM unit, 2) the body of the
intermediate recoil mass (IRM), 3) the piano wires to suspend the mirror (the optics), 4)
the tungsten wires to suspend the recoil mass (RM) of the test mass, 5) the test mass
(TM), 6) the body of the intermediate mass (IM) and 7) the body of the recoil mass
(RM).

vertical element, but In this model, z axis describe the longitudinal (Beam axis) x axis
describes the transverse and y axis describes the vertical in fig. 2.19.

Longitudinal

. Transverse
(Beam axis)

Figure 2.19: coordinate system

The IM is suspended by a single rod from the BF and the IRM is suspended by three
rods from the basement of the BF. The shape of the IM is rectangular parallelepiped with
two pico motors inside. By using these, delicate positioning and inclination adjustment of
IM is done first, but we don’t use these to do feedback control. There are 6 Optical Sensor
Electro Magnetic-actuator (OSEM) flags in the IM, and one can control the position with
the OSEMs in the IRM. The OSEM flag and the OSEM correspond one by one, and there
are six in total, three horizontal components and three vertical components. The IRM is
shaped like an empty box and is suspended so as to cover the IM from above.



2.2. SUSPENSION SYSTEM IN KAGRA 23

2.2.3 Sensor and actuator

OSEM

The OSEM in fig. 2.20 consists of a LED and a photo detector (PD). When the IM moves,
OSEM flags move as well and they change the amount of light that on the PD receives.
From calculating this, one can get the position and tilt information of the IM.

_LED

| coil to actuate

Figure 2.20: CAD pictures of the OSEM

Optical Lever

An Optical lever is a device which detects the displacement of the TM position and its
tilt. In case of BS and SRs, the superluminescent diode is injected from the bottom and
then reflected by the TM, and finally reaches the quadrant photodiode (QPD) as shown
in fig. 2.21. When the mirror moves in longitudinal with displacement d, the beam’s
horizontal shift is

X = 2dsina, (2.18)

where « is the incident angle on the mirror (See the left figure of fig. 2.22). When the
mirror rotates in yaw with angle 9, the angular displacement of the TM, @ is described as

6 =26 (2.19)

(See the right figure of fig. 2.22). From this, one can get the relationship between the tilt
and position of the mass and the laser shift as

(5)=(e o) (), =

where the matrix is called “ABCD matrix” and usually the elements are characterized
by the focal length and distance between the mirror and the object. Furthermore, we
can separate the angle element and the length element theoretically, since no one can put
the mirror at 100% correct position, one needs to consider the misplacement. From the
comparison of the strength of light on QPDs, one can get the tilt information of the TM.
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Figure 2.22: Relationship between TM’'s
motion and laser shift.

Figure 2.21: Sketch of Oplev

Figure 2.23: Type B suspension for BS. Figure 2.24: Type B suspension for SRs
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M

Figure 2.25: Cross section of BS in tank from front (—X, +Y)
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Figure 2.26: Cross section of BS in tank from side (+X, +Y)



Suspension model for VIS

3.1 Mathematical Model

3.1.1 Overview

When one wants to control a machine, one needs to build its mechanical model. In case of
a suspension, one needs to figure out the equation of motion. In general, there are three
kinds of model, this means “point mass model”, “rigid body model” and “elastic body
model” in fig. 3.1. A point mass model is used when one does not need to take the shape
of the object into account. When one think about the rotation of the Earth for example,
one need to consider the shape of the Earth. On the other hand, when one think about
the rotation of the FEarth around the Sun, one does not need to consider the shape of
the Earth and one can regard it as a mass point. This is because the size of the Earth
is extremely smaller than that of the Sun. It is also useful for rough estimation of rigid
body or elastic body model because it is the simplest and easiest model. A rigid body is
a solid body in which deformation is zero or so small it can be neglected. So it includes
the information of its direction and its shape is invariant. An elastic body changes its
shape due to external force.

Point Mass Rigid Body Elastic Body

Figure 3.1: Simple diagram of three models.

A suspension model is build from a rigid bodies (orange ones) and elastic bodies (blue

27
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ones) in fig. 3.2. Suspended objects consist of TM, RM, IM, IRM, GAS filter, MD and
PI. Suspending objects consist of wires, rods and GAS springs.

The model was build by T. Sekiguchi and here is a list of what the suspension model
satisfies [30, 31]

1. All the suspended objects are regarded as rigid bodies with up to 6 DoFs, and their
internal elasticity is not taken into account.

2. A wire is assumed to be a massless spring with stretching and torsional elasticity.
Since it is assumed to be massless, its violin modes are not taken into account.

3. The vertical spring (GAS filter) used in the model works as an ideal linear spring
with a spring constant and a single working-direction. The saturation of the atten-
uation performance due to center of percussion effect is considered.

4. The dissipation due to the internal friction of the elastic material is taken into ac-
count. Thence the spring constants of the vertical springs and wires have imaginary
parts with finite loss angles, which are assumed to be constant over all the frequencies
(structural damping).

=

Figure 3.2: Type B suspension model constitution

3.1.2 Coordinate system

The number of degrees of freedom a point mass in a three dimensional space is 3, but
in the case of the rigid body is 6 and this includes the position information (eg. z,y, 2)
and tilt information (eg. 6,,6,,6.). And now we use the same coordinate definition in
subsection 2.2.2.

Translational conversion is commutative conversion on the other hand, Rotation con-
version is non-commutative. That means for example, the rotation, in case of rotation
around x; axis and x; axis (¢ # j) has two expressions but they are fundamentally differ-
ent, Ry (04,)Re;(0s;) # Re;(0r;)Re;(0,). In this model, the rotation order is defined like
below and image is in fig. 3.3.
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Figure 3.3: the definition of rotation order. 1st. Rotate around z axis. 2nd. rotate
around ¥y’ axis. 3. rotate around z”. [29]

Since we use wires to hang the objects and wires are clamped on objects, it is convenient
to use a local coordinate (x, i, 2;) which is fixed in the object. And here is the relationship
between the global coordinate (zs, ys, z5) and the local coordinate.

T x cosf, —sinf, 0
ys | = v |+ | sinf, cosh, 0 |- (3.1)
Zs z 0 0 1
cosf, 0 sinf, 1 0 0 Ty
0 1 0 0 cosf, —sinb, Y |, (3.2)
—sinf, 0 cosb, 0 sinf, cosb, Zn

where (z,y, 2,6,,0,,0.) is the position and the orientation of the suspended object.

3.1.3 Equation of motion of the suspension

One can get the equation of motion from Lagrangian. In case of this suspension, the
displacement from the equilibrium point is tiny so one can use the Taylor approximation
of Lagrangian, .Z,,, around the equilibrium point, .,

A 0% 0L

i ox  ox ! (8:3)
0L 1027
Lopr(X) = L(Xeg) + == X - X2 (3.4)
P Y oX Xex., 20X%| i

From eq. (3.3), the equation of motion is described as
Mg+ Cx+ K(x — Xeq) =0 (3.5)

M = (M;;) = (aazz(;’xf) B ) (3.6)
) (3.7)

C=(Cy) = (a?y(x,x')
) , (3.8)

(9.731'8]}]‘

K = (Kj;) = (gx(f@(;)
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Table 3.1: The potential for Type B suspension (SR)

potential term remarks
1
vavireS ikS(l - l0>2 ks = ES/ZO
1
U Uwiret §ktA0t2 k:t == JG/ZO

1
Ucas §M (27 fo)? AR? + MgAh -

Ugravity ng -
1
Tira M (&% 4 y? + %) -
T 2
1
Trot inIw -
1. C\T ) .
F F 5 (&1 — o) C (1 — @2) -

Table 3.2: parameters for lagrangian

symbol meaning
C suitable damping coefficient matrix
E Young’s modulus
fo resonant frequency of GAS
G shear modulus

deviation of keystone of the GAS
from equilibrium position
1 moment of inertia tensor
polar moment of inertia of
wire cross section
actual distance between
two attachment points
natural length of the wire

Ah

lo

M mass

S cross section of wire
z

Y

z

position
position
position
position and orientation
of damper
position and orientation
of conducting body
Af twist angle
w angular velocity
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Table 3.3: The design parameter for Type B suspension (SR) from [30]
description | symbol [ wnit | Fo [ F1 [ F2 | IRM M | RM | ™™ |
mass M kg 474 | 90 90 12 16 13 10.7
body momenta of inertia () I 60 4 4 0.25 0.15 0.18 | 0.051
momenta of inertia (y) I, kgm? | 120 | 6.4 6.4 0.4 0.19 0.18 | 0.051
momenta of inertia (z) I, 60 4 4 0.25 0.15 0.23 | 0.084
number of wires n - - 1 1 3 1 4 4
material - - - margin steel | C70 steel | margin steel tungsten
density p g/cm? - 8.0 7.8 8.0 19.3
Young’s modulus E Gpa - 195 200 195 411
Poisson ratio o - - 0.3 0.3 0.3 0.28
loss angle ) - - 1x1073 1x 1074 1x 1073 1x 104
length L m - 1.3 0.56 0.56 0.56 0.56 | 0.56
wire length in sumcon m
diameter d mm - 2.1 1.6 0.3 0.85 0.6 0.2
diameter in sumcon mm
x position D, mm - - - - - 10 5
z position D, mm - - - - - 145 125
radial distance to y axis D, mm - - - 150 - - -
upper clamp y positon Dy, mm - -5 5 0 -5 0
lower clamp y position D, mm - -5 0 -2 0
resonant frequency faas mHz 60 250 250 - - - -
GAS qualiy factor Qaas - 3 6 6 - - - -
saturation level Bgas dB -60 | -60 -60 - - - -
radial distance to y axis Rip mm 600 - - - - - -
P horizontal mode frequency fip mHz 30 - - - - - -
qualiy factor Q1P - 3 - - - - - -
saturation level Brp dB -70 - - - - - -
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clamping
point

ideal wire real wire

Figure 3.4: The difference of ideal wire and real wire. Real wire has the breakoff because
of its rigidity.

where T is kinetic energy, .% is dissipation function and U is the potential energy. M is
the inertia matrix, C' is the damping matrix and K is the stiffness matrix. As a result,
one can get the linearized equation of motion.

From the definiton in subsection 3.1.1, the lagrangian consists of potential energies in
table 3.1, table 3.2 and table 3.3. As a result, one can get the transfer functions in all
DoFs from the linearized equation. This helps us to know the behavior in frequency space.
When one control the system, it is important to get the frequency response of the system.
With actuators and sensors, it is possible to actuate the system and get the displacement
of the system. The transfer function, G;;, from input ¢ to output j is described as

-1
Gy = [(—&M T iwC + K) ] (3.9)
]
and one can get this function from the Fourier transform of the linearized equation,

Mi+Ca+ K(x — @) = F (3.10)

which is eq. (3.5) with excitation term. When one wants a response from ground motion,
x4, one can use the transfer function [30],

Gleomnd) () [(—wQM +iwC + K)_l (szg —iwCy — Kg)>hg‘- (3.11)

v

3.1.4 Other Effects

In an ideal model, one can use the ideal wire which is massless and does not have the
effective bending point in fig. 3.4. When one clamps a wire, it has a breakoff, A [34],

A== (3.12)

where E is the Young’s modulus, [ is the second moment of area, and 7T is the tension of
the wire. The second moment of area is a geometrical property of an area which reflects
the amount representing easiness of deformation of a member with regard to an arbitrary
axis. In this case, I, = md*/64 where y is the axis which penetrates the wire from below.



Installation of SR3 and its feature

I have participated in the installation of all Type B suspensions , i.e. BS, SRM, SR2 and
SR3 with a team from NAQOJ. In this chapter, I mention the feature of SR3 as an example
of a Type B suspension.

4.1 Installation of SR3

The summary of the installation process:

Fig. 4.1 shows the installation of the test mass. Before this phase, we put on four
permanent magnets for actuating on the mirror and attached four “wire breakers” to hang
with wires. In this phase, we set the TM to the nominal position in the assembly frame.
To do that, we used a rail on the assembly frame and slided the optic stand.

Fig. 4.2 shows the installation of the intermediate mass. By setting this, one can hang
the TM from IM.

Fig. 4.3 shows the installation of the recoil mass. Recoil mass can be divided into the
cap part and the body part. After hanging optic, one can cover the optic with the body
part of RM. After lid, we also hang the RM.

Fig. 4.4 shows the installation of the standard filter. Since the spring constant of GAS
filter depends on the hung mass, we used ballast masses to adjust the horizontal level and
the weight. Because GAS filter’s resonant frequency also depends on the payload mass,
we measured the tolerance range of the payload weight. Fig. 7?7 shows the result of SR3
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