Development of 13.5-meter-tall Vibration Isolation System for the Main Mirrors in KAGRA

奥富 弘基 (総研大 D4) 2019年1月31日 博士学位審査会 @国立天文台三鷹キャンパス

- 重力波望遠鏡KAGRA 腕共振器鏡 (メインミラー)用の防振システムの開発を 行った
- 防振性能を評価し、タワー部の要求値を満たす
 ことに成功

 ・ 共振モードの減衰にmodal damping制御を導入、
 実装してダンピングに成功

Chap. 1: Introduction

Chap. 2: Vibration isolation system

Chap. 3: KAGRA Type-A suspension

Chap. 4: Control design

Chap. 5: Performance test of Type-A tower

- 研究の背景・動機
- 防振システム: Type-A suspension
- 防振性能の評価

研究の背景・動機

重力波観測による天文学

© NASA

Advanced Detector Network

KAGRA

第2.5世代のレーザー干渉計型重力波望遠鏡
 地下環境の利用 ▶ 小さな地面振動レベル
 低温サファイア鏡 ▶ 熱雑音の低減

重力波観測ネットワークへの寄与

重力波望遠鏡の アンテナパターン Fairhurst (2012) z 0 -0.5 3 0.2 0.4 0.6 0.8 -1 0.2 0.4 0.6 0.8

Schutz (2011)

地下環境+低温の雑音低減技術

波源の到来方向

決定精度

Best: $10 \text{ deg}^2 \ge 4 \text{ deg}^2$

Worst: 150 deg² > 22 deg²

ネットワークの

感度等方性

47.3 % > 73.5 %

etc...

KAGRA の 雑音 源

地面振動雑音を減らすには?

① 静かな場所で観測する

2 鏡を防振する

▶ 振り子型防振システム

振り子による防振システム

共振周波数より高周波の振動伝達を低減

しかし共振周波数では…

共振周波数では振動を減衰 (damp) する必要

ダンピング制御

フィードバックされる力 ∝ マスの速度

ダンピングフィルタの設計

鏡防振システム: Type-A Suspension

Type-A Suspension

 10^{-1}

全9段、腕共振器鏡用の防振システム

- ・ 上5段: タワー部 (常温:~300 K)
- 下4段:ペイロード (低温:~20 K)
 - ▶ 防振性能向上のための設計

共振周波数を下げる

10⁰

Frequency [Hz]

10¹

低周波共振のための機構

Inverted Pendulum (IP)

水平方向~0.07 Hz

Geometric Anti-Spring (GAS) 鉛直方向~0.3 Hz

▶ 搭載荷重によって共振周波数の調整を行う

低周波共振のための機構

センサ・アクチュエータ配置

干渉計の制御フェイズ

Type-A Suspension 要求值

		要求值	備考
Calm-down	共振モード 1/e 減 衰時間	< 60 sec.	干渉計信号の早期回復
	RMS 変位 (L)	< 50 µm	Lock-acquisitionへの移行
	RMS 変位 (T, V)	< 100 µm	ミスセンタリング
	RMS 角度 (P, Y)	< 50 µrad	光てこセンサの線形領域内
Lock- acquisi- tion	RMS 速度(L)	< 240 µm/s	補助レーザーのロック
	RMS 角度 (Y)	< 880 nrad	干渉計角度センサへの引継
Observation	変位雑音 (L) @ 10 Hz	8 x 10 ⁻²⁰ m/Hz ^{1/2}	Lの他、V-coupling 1% 含む
	RMS 角度 (P, Y)	200 nrad	ビームスポット揺れ < 1 mm
	DC ドリフト (P, Y)	400 nrad/h	1日以上のロック維持

開発における担当部分

タワー:防振 y = r ペイロード:低温サブ グループ ハードウェアのインストール 防振性能のための荷重調整 センサ・アクチュエータ試験 一部は開発も 信号取得・リアルタイム制御用ディ ジタルモデル開発 剛体モデリングによる制御系設計 担当の範囲外

ハードウェアの初期設計

防振性能の評価

Type-A タワー試験

- Pitch角度
- observation phaseの要求値
 - ペイロード性能への依存性が大きく タワーのみでの検証が妥当でない

タワー試験で検証する性能

測定項目		要求值
_	共振モード1/e 減衰時間	< 60 sec.
OWL	RMS 変位 (L)	< 50 µm
n-d	RMS 変位 (T)	< 100 µm
Calr	RMS 変位 (V)	< 100 µm
	RMS 角度 (Y)	< 50 µrad
ck- qui ion	RMS 速度(L)	< 240 µm/s
Lo ac	RMS 角度 (Y)	< 880 nrad

Type-A towerの性能試験

System characterization

▶ 周波数応答とスペクトル測定、動作性の評価

Torsion mode damping

▶ yawモードについての1/e減衰時間・残留RMS評価

GAS垂直モードのmodal damping

▶ 状態空間モデルを利用したMIMO制御の実装

防振比測定 (タワー+ペイロード接続後)

▶ 地面から鏡までの振動の伝達関数の推定

Type-A towerの性能試験

System characterization

▶ 周波数応答とスペクトル測定、動作性の評価

Torsion mode damping

▶ yawモードについての1/e減衰時間・残留RMS評価

GAS垂直モードのmodal damping

▶ 状態空間モデルを利用したMIMO制御の実装

防振比測定 (タワー+ペイロード接続後)

▶ 地面から鏡までの振動の伝達関数の推定

Torsion Mode Damping

1本吊り振り子 = ねじれ振り子 ▶ 低い共振周波数 (< 0.1 Hz) ▶ 長時間のビームミスアラインメント

BF Damper (LVDT-Actuator)

開ループ伝達関数 (BF Yaw)

1/e減衰時間の測定

mode	減衰時間 (undamped)	減衰時間 (damped)
#1	961.4 ± 4.6 秒	_
#2	158.6 ± 4.6 秒	_
#3	1155.5 ± 1.9 秒	_
		22

1/e減衰時間の測定

RMS角度(Yaw)の低減

RMS角度(Yaw)の低減

Type-A Tower 性能評価結果

		測定結果	要求値	備考
Calm-down	共振モード 1/e 減 衰時間	< 44 sec.	< 60 sec.	Yaw 1~3次(最低周波) モードのみ
	RMS 変位 (L)		< 50 µm	
	RMS 変位 (T)		< 100 µm	
	RMS 変位 (V)		< 100 µm	
	RMS 角度 (Y)	~ 0.23 µrad	< 50 µrad	BFでのin-loop評価
Lock- acquisition	RMS 速度(L)		< 240 µm/s	
	RMS 角度 (Y)	~ 0.23 µrad	< 0.88 µrad	BFでのin-loop評価

Type-A towerの性能試験

System characterization

▶ 周波数応答とスペクトル測定、動作性の評価

Torsion mode damping

▶ yawモードについての1/e減衰時間・残留RMS評価

GAS垂直モードのmodal damping

▶ 状態空間モデルを利用したMIMO制御の実装

防振比測定(タワー+ペイロード接続後)

▶ 地面から鏡までの振動の伝達関数の推定

Modal Dampingとは?

Modal Dampingとは?

制御対象について

防振システム > 多自由度連成振動系

- 計75個の固有振動モード
- 多入力多出力(Multi-Input-Multi-Output)システム
- 主要な振動モードの十分な可観測性・可制御性
- 運動方程式による初期モデリングが容易

 Modal dampingでより効率的な damping制御が可能

先進的な制御手法へ

Systematicな最適化・自動化

重力波望遠鏡の性能向上

- 観測期間における望遠鏡稼働率
- Noise huntingの時間短縮・感度向上

Modal Dampingの適用: GAS (V方向)

Damping filterの設計

従来の制御の場合.

GASの振動モード

モーダルダンピングのメリット

モード座標信号

センサ信号

 ● : 固有モード行列(モード座標系→物理座標系への変換行列)

 ● モデルから導出

 ← といますのた名のの物理の構成のの変換行列)

S:センサ基底から各段の物理座標系への変換行列

変換行列とモード行列

モード信号の対角化

モード座標系での力変位伝達関数

GASモーダルスペクトル (制御OFF)

GASモーダルダンピングの結果

RMS振幅 (V方向)

4次,5次モードは

RMS振幅 @ DP

couplingの影響で悪化

0.26 µm 🕨 0.11 µm

Frequency [Hz]

GAS displacement [um/Hz^{1/2}]

GAS displacement [um/Hz^{1/2}]

10

F0 free

F1 free

F1 damped

F1 free RMS

F1 damped RMS

F0 damped

F0 free RMS

F0 damped RMS

Type-A Tower 性能評価結果

		測定結果	要求值	備考
Calm-down	共振モード 1/e 減 衰時間	< 44 sec.	< 60 sec.	Yaw 1~3次(最低周波) モードのみ
	RMS 変位 (L)		< 50 µm	
	RMS 変位 (T)		< 100 µm	
	RMS 変位 (V)	0.11 µm	< 100 µm	DPでの評価 (damped)
	RMS 角度 (Y)	~ 0.23 µrad	< 50 µrad	BFでのin-loop評価
Lock- acquisition	RMS 速度(L)		< 240 µm/s	
	RMS 角度 (Y)	~ 0.23 µrad	< 0.88 µrad	BFでのin-loop評価

Conclusion

Type-A Tower 性能評価結果

		測定結果	要求値	備考
Calm-down	共振モード 1/e 減衰時間	< 44 sec.	< 60 sec.	Yaw 1~3次(最低周波) モードのみ
	RMS 変位 (L)	1.1 µm	< 50 µm	BFでの評価
	RMS 変位 (T)	1.1 µm	< 100 µm	BFでの評価
	RMS 変位 (V)	0.11 µm	< 100 µm	DPでの評価 (damped)
	RMS 角度 (Y)	~ 0.23 µrad	< 50 µrad	BFでのin-loop評価
Lock- acquisition	RMS 速度(L)	0.73 µm/s	< 240 µm/s	BFでの評価
	RMS 角度 (Y)	~ 0.23 µrad	< 0.88 µrad	BFでのin-loop評価

測定できた項目は全て要求値を満たすことに成功

Type-A Suspension開発の達成度

タワー試験での成果

Calm-down phase ▶ 要求値達成 (1/e減衰時間、pitch自由度を除く)

Lock-acquisition phase > 要求値達成 (pitch自由度を除く)

▶ 性能を満たすタワー部を構築できた

今後の課題

ペイロード接続後、full setupでの評価 干渉計と統合後、Observation phaseの 要求項目を試験

2017年1月~2018年3月

大型防振システムのインストール・試験

2018年4月28日~5月7日

低温Michelson干渉計でのKAGRA試験運転

LIGO + Virgo observation run-3 (O3) 参加に 向けて干渉計全体の統合試験中 X-arm (片腕) 共振器のロックを達成

Modal Dampingの成果

タワー試験での成果

✓ Type-A GAS制御へ実装、低次モードのダンピング達成

Modal dampingの有効性を示すことが出来た

今後の課題

従来の制御手法との性能比較 1/e減衰時間の低減、雑音の影響、etc... さらなる先進的な制御手法への応用

KAGRA Type-A suspensionの開発を行った 世界初の地下大型防振システム タワー部の性能評価 ▶ 要求値を達成 干渉計の低温稼働に貢献

防振システムのmodal damping

状態空間モデルによる振動モード分解

Type-A GAS制御へ実装、modal dampingを達成 先進的な制御手法の第一歩を実システムで実証 Backup Slides

Type-A towerの性能試験

System characterization

▶ 周波数応答とスペクトル測定、動作性の評価

Torsion mode damping

▶ yawモードについての1/e減衰時間・残留RMS評価

GAS垂直モードのmodal damping

▶ 状態空間モデルを利用したMIMO制御の実装

防振比測定 (タワー+ペイロード接続後)

▶ 地面から鏡までの振動の伝達関数の推定

機械的周波数応答の測定

アクチュエータで振動を励起、センサまでの伝達関数を測定

▶ 振動特性をnominalモデルと比較、動作性を検証

Type-A Suspension 試験の達成度

※ 本試験後のペイロード試験および干渉計コミッショニングで要求値を達成済み

制御手法ごとの比較

従来の制御系設計

Pros	Cons
実装が容易 これまでの使用実績	人の手による経験的な設計+調整 1自由度ごとに制御 十人十色な設計思想

モデリングに基づく制御系設計

Pros	Cons
多自由度の扱いが容易 数学的な最適化が可能 より正確な制御シミュレーション	制御性能がモデリング精度に依存 精度の良いモデリングが大変

▶ 高感度化・安定観測にはmodel-basedな手法が重要
得られた成果・期待される応用

- 地下環境における10 m級の大型防振系の
 インストール手法の確立
 - ➤ Type-A 防振系は2/4台がインストール完了 残りの2台も同様の手法でインストール進行中
- 3 km Michelson 干渉計の安定制御の達成
- MIMO制御 ▶ ロバスト・適応制御
 - ▶ 環境センサと連動した干渉計制御の最適化
 - ▶ 制御破綻による観測時間のロスを抑える

振り子による防振システム

地面から鏡へ伝わる振動 $\propto f_0^2 / f^2$

振り子の周波数応答

- コンパクト連星合体のパラメータ推定精度の向上
- 中間質量ブラックホール連星の合体
- レーザー干渉計の安定動作

and more ...

重力波分野における防振システム

LIGO: Quad suspension ~ 10⁻¹² m/Hz^{1/2} @ 10 Hz

Virgo: Superattenuator ~ 10⁻²³ m/Hz^{1/2} @ 10 Hz

本審査に向けた現在の進捗状況

- モデルによる制御系の検証
 - □ 共振モード 1/e 減衰時間の制御系
 - □ 制御雑音の寄与
 - □ 一入力一出力の場合と 多入力多出力の場合の比較
- 最適制御の性能評価
 - □ 実装
 - □ 性能試験

1次:0.17 Hz 2次:0.43 Hz 3次:0.74 Hz 4次:1.02 Hz 5次:1.43 Hz

▶ 3D剛体モデルで同定できているモード周波数

低周波帯における感度改善の意義

- コンパクト連星合体のパラメータ決定推定精度の向上
- 非対称な中性子星の自転
- 中間質量ブラックホール連星の合体

and more...

地面振動雑音とは

地面振動雑音を減らすには?

①地下は静か

振り子の周波数応答

共振を抑制するには...

防振懸架系の役割

重力波に対する 自由落下応答

2. 地面振動からの防振

3. 干渉計の制御性能

Why Are Mirrors Suspended?

Michelson Interferometer

Mirror Alignment

Mirror Alignment

防振懸架系の性能評価

機械的パラメータの同定

- 固有振動モード
 周波数
- 振動のQ値

- ・ 伝達関数の測定
- 3D剛体モデルシミュ
 レーションとの比較

モデルとの比較

モデルとの比較

ダンピング制御 - 開ループ伝達関数

モード座標系での力変位伝達関数

状態空間モデル
求(t) =
$$A\underline{x}(t) + B\underline{u}(t)$$

 $y(t) = C\underline{x}(t) + D\underline{u}(t)$
状態変数
入力
不
新
開
数
 $J = \int_{0}^{t_{f}} [x^{T}(t)Qx(t) + u^{T}(t)Ru(t)] dt$
重み付け行列

▶ 最適フィードバックゲイン

$$\boldsymbol{u}(t) = -\boldsymbol{F}\boldsymbol{x}(t), \quad \boldsymbol{F} = \boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{P}$$

MIMO制御の長所と短所

○ 多段フィードバックを自動的に計算

➤ KAGRAの防振システムのような多自由度連成振動 系の制御に適する

○ モデルをベースとした制御

- ▶ 物理パラメータの時間変化やロバスト性などを定量 的に考慮できる(応用)
- × 性能がモデリング精度に依存
 - ▶ 実システムとモデルの誤差を減らす必要

重力波分野における現代制御

- T. Accadia et al., Rev. Sci. Instrum. 82, 094052 (2011) ➢ KalmanフィルタによるVirgo倒立振り子の状態推定
- M. Beker et al., Rev. Sci. Instrum. 85, 034501 (2014)
 - ➢ Virgo external optical benchの最適制御
- B. Shapiro PhD Thesis (2012)
 - ▶ LIGO quad suspensionの適応モーダルダンピング
- D. Martynov PhD Theis (2015)
 - ▶ LIGO quad suspensionの光てこ制御におけるH_∞制御

最適制御の実装に向けて

- ✓ 2段振り子トイモデルによる検証
- ✓ Type-Aモデルを用いたGASモーダルダンピング
- □ Type-Aモデルでの最適制御の調整
- □ KAGRAディジタルシステムへ実装・性能評価

防振比の測定 @ Engineering run

防振比の測定結果

ダミーペイロードでの残留RMS

Geophone (速度センサ) x2▶ 水平方向と鉛直方向のRMSを評価

残留RMSの測定結果

水平方向 2.2 × 10⁻⁹ m (> 0.1 Hz)

鉛直方向

3.9 × 10⁻⁷ m (> 0.03 Hz)

タワー部の性能としては OK トペイロード接続後再評価

多入力多出力(MIMO)制御とは?

- センサ信号をそれぞれの段の
 アクチュエータにフィードバック
- 測定した伝達関数をベースに フィルタを設計

- 各段のセンサ信号をまとめて処理
 してフィードバック信号を分配
- ・ 状態空間モデルをベースにフィル
 タを設計
 112

防振システム > 多自由度連成振動系

従来の制御の場合...

多入力多出力(MIMO)制御の場合...

 $\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$ $\boldsymbol{y}(t) = C\boldsymbol{x}(t) + D\boldsymbol{u}(t)$ システム全体を モデリング

防振システム 🕨 多自由度連成振動系

ー入力一出力(SISO)制御の場合...

多入力多出力(MIMO)制御の場合...

 $\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$ $\boldsymbol{y}(t) = C\boldsymbol{x}(t) + D\boldsymbol{u}(t)$ システム全体を モデリング

	長所	短所
は 来の 制御	その場で手軽に設計可能 これまで干渉計制御に用い られてきた実績	人の手による経験的なtuning が必要 1自由度ごとに扱う 十人十色な制御設計思想
	多段にわたる連成振動をモ デリング可能 自由度間coupling Systematicな最適化が可能	制御性能がモデリングの精度 に依存 精度の良いモデリングが大変

	長所	短所
は 来の 制御	その場で手軽に設計可能 これまで干渉計制御に用い られてきた実績	人の手による経験的なtuning が必要 1自由度ごとに扱う 十人十色な制御設計思想
	多段にわたる連成振動をモ デリング可能 自由度間coupling Systematicな最適化が可能	制御性能がモデリングの精度 に依存 精度の良いモデリングが大変