Development of 13.5-meter-tall Vibration Isolation System for the Main Mirrors in KAGRA

Koki Okutomi (Sokendai, NAOJ) Dec 6, 2018 KAGRA F2F meeting @NAOJ Mitaka

Poster: Overview of My Work

• Type-A suspension

• Modal damping for GAS vertical modes

Type-A Suspension

Type-A Suspension

9-stage multiple pendulum

- Top 5 stages: Tower (~300 K)
- Bottom 4 stages : Payload (~20 K)

For high vibration-isolation performance...
Lowering resonant freq.
Cascading

Scope of This Study

Tower: VISPayload : CRY

- Hardware installation
- System characterization
- Real-time control model construction
- Modeling
- Damping control

To construct a Type-A tower satisfying the basic requirements

What I Did

Transfer function measurement

Modal Damping in GAS chain

Torsion mode damping

Vibration isolation ratio measurement (full suspension)

Topic of this talk!

Transfer function measurement

Modal Damping in GAS chain

Torsion mode damping

Vibration isolation ratio measurement (full suspension)

Modal damping in GAS vertical modes

GAS Filter

Geometric anti-spring filter

- Vertical low-frequency oscillator
- Implemented on all tower stages
- Resonant frequency depends on suspended load, blade compression, etc...

GAS Vertical Control

GAS Frequency Responses

周波数 [Hz]

周波数 [Hz]

Can we damp specific modes independently...?

Modal damping

Mode shapes in GAS

Concept of Modal Decomposition

Modal Decomposition

Modal basis

Sensor basis

- $\Phi : \textbf{Eigenmode matrix} \pmod{\text{basis}} \rightarrow \texttt{Cartesian basis} \\ \textbf{calculated from 3D rigid-body model}$
- M : Sensing matrix

Modal Decomposition in Model

Decoupled into a set of single pendulum responses

Measured Modal Decomposition

GAS Modal Spectrum (No Control)

1st + 2nd Modal Loop Closed

Other Topics

Transfer function measurement

Gross behavior is as expected (IP, BF)

GAS mode shape mismatch

Modal Damping in GAS chain

Lower-order modes

decoupled

Modal damping worked

Decay time performance: to be checked

Torsion mode damping

RMS ~ 230 nrad < req.

Vibration isolation ratio measurement (full suspension) Estimated: 10⁻²¹ < req. Model vs measurement mismatch Only longitudinal, vertical

also to be measured

- The installed Type-A tower satisfies basic requirements for vibration isolation
- Modal damping is implemented and validated in GAS vertical mode control
- The Type-A suspension integrated with cryogenic payload is in commission

KAGRA

2.5th generation laser interferometer Underground site Low seismic noise Cryogenic sapphire mirror Low thermal noise

KAGRA Noise Breakdown

2017年1月~2018年3月 大型防振システムのインストール・試験

2018年4月28日~5月7日

低温Michelson干渉計でのengineering run

現在~2019年

LIGO + Virgo observation run-3 (O3) 参加に 向けて感度向上のためのアップグレード中

振り子による受動防振

地面から鏡へ伝わる振動 $\propto f_0^2 / f^2$

KAGRAの位置付け

- Adv. LIGO + Adv. Virgo + KAGRA での同時観測シナリオ を計画中、一刻も早い本格稼働が望まれている
- 地下環境+低温技術 ▶ 第3世代望遠鏡への応用

低周波帯における感度改善の意義

- コンパクト連星合体のパラメータ決定推定精度の向上
- 非対称な中性子星の自転
- 中間質量ブラックホール連星の合体

and more...

Type-B

地面振動雑音とは

地面振動雑音を減らすには?

地下は静か

振り子の周波数応答

振り子の周波数応答

共振を抑制するには...

フィードバックされる力 ∝ マスの変位

2. 地面振動からの防振

3. 干渉計の制御性能

Why Are Mirrors Suspended?

Michelson Interferometer

Mirror Alignment

Mirror Alignment

防振懸架系の性能評価

機械的パラメータ の同定

機械的パラメータの同定

- 固有振動モード
 周波数
- 振動のQ値

- ・ 伝達関数の測定
- 3D剛体モデルシミュ
 レーションとの比較

Anti-spring Mechanisms

Inverted pendulum (IP) Geometric anti-spring (GAS)

~ 0.07 Hz in horizontal

~ 0.3 Hz in vertical

Adjustable resonant frequency

Anti-spring Mechanisms

モデルとの比較

重力波分野における防振システム

LIGO: Quad suspension ~ 10⁻¹² m/Hz^{1/2} @ 10 Hz

Virgo: Superattenuator ~ 10⁻²³ m/Hz^{1/2} @ 10 Hz

Requirements for Type-A Suspension

		Value	Notes
Mech.	Displacement noise (long.)	< 8×10 ⁻²⁰ m/Hz ^{1/2}	@ 10 Hz, x10 margined
	Displacement noise (vert.)	< 8×10 ⁻¹⁸ m/Hz ^{1/2}	@ 10 Hz, x10 margined
Control	1/e decay time	< 60 sec	
	RMS velocity (long.)	< 0.01 µm	
	RMS displacement	< 1 mm	
	RMS angle (pitch, yaw)	< 0.3 µrad	
	Control noise (long.)	< 1×10 ⁻¹⁹ m/Hz ^{1/2}	

Installation

Installation

Installation

防振性能の評価

Seismic Attenuation Measurement

防振比の測定結果

ダミーペイロードでの残留RMS

Geophone (速度センサ) x2▶ 水平方向と鉛直方向のRMSを評価

RMS Residual Motion @ DP

Horizontal 2.2 × 10⁻⁹ m (> 0.1 Hz)

Vertical

3.9 × 10⁻⁷ m (> 0.03 Hz)

タワー部の性能としては OK ▶ ペイロード接続後再評価

モデルとの比較

ダンピング制御 - 開ループ伝達関数

モード座標系での力変位伝達関数

多入力多出力(MIMO)制御とは?

- センサ信号をそれぞれの段の
 アクチュエータにフィードバック
- 測定した伝達関数をベースに
 PIDフィルタを設計

- 各段のセンサ信号をまとめて処理
 してフィードバック信号を分配
- 状態空間モデルと評価関数を
 ベースに最適レギュレータを設計

状態空間モデル
求(t) =
$$A\underline{x}(t) + B\underline{u}(t)$$

 $y(t) = C\underline{x}(t) + D\underline{u}(t)$
状態変数
入力
不
新
開
数
 $J = \int_{0}^{t_{f}} [x^{T}(t)Qx(t) + u^{T}(t)Ru(t)] dt$

▶ 最適フィードバックゲイン

$$\boldsymbol{u}(t) = -\boldsymbol{F}\boldsymbol{x}(t), \quad \boldsymbol{F} = \boldsymbol{R}^{-1}\boldsymbol{B}^{\mathrm{T}}\boldsymbol{P}$$

MIMO制御の長所と短所

○ 多段フィードバックを自動的に計算

- ➤ KAGRAの防振システムのような多自由度連成振動 系の制御に適する
- モデルをベースとした制御
 - ▶ 物理パラメータの時間変化やロバスト性などを定量 的に考慮できる(応用)
- × 性能がモデリング精度に依存
 - ▶ 実システムとモデルの誤差を減らす必要

重力波分野における現代制御

- T. Accadia et al., Rev. Sci. Instrum. 82, 094052 (2011) ➢ KalmanフィルタによるVirgo倒立振り子の状態推定
- M. Beker et al., Rev. Sci. Instrum. 85, 034501 (2014)
 - ➢ Virgo external optical benchの最適制御
- B. Shapiro PhD Thesis (2012)
 - ▶ LIGO quad suspensionの適応モーダルダンピング
- D. Martynov PhD Theis (2015)
 - ▶ LIGO quad suspensionの光てこ制御におけるH_∞制御
最適制御の実装に向けて

- ✓ 2段振り子トイモデルによる検証
- ✓ Type-Aモデルを用いたGASモーダルダンピング
- □ Type-Aモデルでの最適制御の調整
- □ KAGRAディジタルシステムへ実装・性能評価

Decay Time with Damping Simulation

Implementation

Content State
Let's do Diagonalization!

Sensor & Actuator Diagonalization

