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Update Notes

14 Oct 2018

• For Type-B suspensions, the longitudinal displacement of the TM would cause change of beam
spot in the vertical direction so I swapped (Long) and v in section 5 and 7. I also modified
swapped some sin and cos so the mathematics is consistent throughout. Figures are also modified
to match the change.

• Fixed some typos

• I worked on the Oplev of SR3 during the week of 8th Oct, 2018. I applied the matrix (44) and
(22) for tile and length sensing Oplev respectively without any rotational transformation, i.e.
ϕT = ϕL = γ = 0, as they happened to be close to zero. But, because of the design of the
suspension, pitch is known to be coupled with length. I didn’t have enough time to study this
effect so I couldn’t verify my matrix but I expect it to be close to correct.

1 Introduction

This document was written after my lecture discussing the basics of optical lever (OpLev). The lecture
slides were uploaded to JGWdoc and the document number is JGW-G1808874-v1. I changed some
notations so equations seen in this document might not be consistent with that of the lecture. The
reason for modifying the notations is to eliminate ambiguity in the slides and to make things more
clear. It wasn’t so clear because I was in a rush while I was preparing the lecture.

I wasn’t able to work with the length sensing OpLev during my stay in KAGRA. So any discussion
beyond the simple tilt sensing OpLev remains purely theoretical and untested. Therefore, I strongly
encourage you to derive the equations by yourself instead of simply applying them. This is because I
am, by no means, an expert in optics. So, my derivation might not be correct or I might misunderstand.
More importantly, I need your contribution to verify the validity of this document. And if you find
anything wrong in this document, I hope this would encourage you to correct my faults and propose
another solution to this problem because this knowledge of diagonalizing OpLev signal is, for some
reason, missing from the JGWdoc.

Just in case you accidentally opened this document and still wanted to finish reading anyways for
whatever reason, OpLev is a external position sensing system that tells the longitudinal, yaw and pitch
displacements of the test mass (TM). In the suspension system, we pair actuators with sensors so we
can control the actuators. This is called closing the control loop. Due to varies reasons, we cannot
use local sensors for the test mass so we need to use alternatives. Since the test mass is technically a
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mirror, we can direct a light beam to the TM and by interpreting the reflected beam we can tell its
longitudinal, pitch and yaw displacements.

Please also don’t forget to take a look on Simon’s original document on OpLev setups and basic
principles (JGW-T1605788-v9).

2 Prerequisites

If you find yourself not knowing at least one of the items from the list below, please try to learn so
by reading my original lecture slides and Simon’s document or learning from colleagues or from the
Internet.

• Geometry and coordinate transformation (rotation in particular)

• Basic understanding in optical devices (lens, mirror and beam splitter)

• Matrix manipulation

• Quadrant photodiode (QPD) (calibration and defining its coordinate system)

• Defining coordinate system for the QPD in the MEDM screen

• Ray transfer matrix (RTM a.k.a ABCD matrix)

• Power spectrum and phase diagram from diaggui.

3 Definitions

From the picture, we can see the beam starts from the collimator. In reality, the beam will enter
the suspension vacuum chamber from an angle such that the angle of incidence is non-zero. This
non-zero angle of incidence is particularly important because, as we shall see later, with a zero angle
we could never detect longitudinal displacement. The beam bounces off the test mass and meets the
steering mirror which is used to direct the beam so that it goes through a beam splitter. One part
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of the beam will strike the tilt sensing QPD and the other part will meet a length sensing QPD after
going through a lens with a focal length, f.

4 Tilt Sensing OpLev

by the definition of the ray transfer matrix, we can write:(
XTilt

θTilt

)
=

(
1 r
0 1

)(
XTM

θTM

)
(1)

where

• XTM and θTM are the displacement and the angle between the ray and optical axis at the TM
plane,

• r is the beam length between the TM and the Tilt sensing QPD and

• XTilt and θTilt are the displacement and the angle between the ray and optical axis at the Tilt
QPD plane.

Since QPD only senses displacement, we can ignore the angle of the ray and write:

XTilt = XTM + rθTM (2)

For simplicity, we will assume the contribution of XTM is small compare to that of θTM .

The above picture shows the displacement of the OpLev beam corresponding to a tilt (yaw or pitch)
of the TM. The red beam is the path of the original path and the blue beam is the reflected beam
after the TM is tilted. Dotted lines are the corresponding normals of the TM. And, α is the angle of
incidence. It is easy to see that:

for pure yaw:

θTM = α+ θyaw + θyaw − α (3)
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θTM = 2θyaw (4)

and for pure pitch:

θTM = α+ θpitch + θpitch − α (5)

θTM = 2θpitch (6)

While we can safely assume pitch and yaw are axes independent of each other, and since the
displacement seen at the tilt QPD plane is the effective length times the tilt angle, we can write rθTM

in the vector form:

rθTM = 2ryθyaw + 2rpθpitch (7)

where ry is the effective beam length of yaw from TM to tilt QPD and rp is the effective beam
length of pitch from TM to tilt QPD. And, ryθyaw and rpθpitch are two diagonal vectors at the tilt
QPD plane.

then substituting (7) into (3), we get:

XTilt =

(
2ry 0
0 2rp

)(
θyaw
θpitch

)
(8)

As for XTilt, it is just the coordinate at the tilt QPD plane given by the output of the QPD. So,
we can redefine XTilt

XTilt ≡
(
xtilt
ytilt

)
(9)

where (xtilt,ytilt) is the coordinate of the beam at the tilt QPD plane. And this coordinate can be
calculated after the calibration of the tilt QPD, and it can be expressed by:(

xtilt
ytilt

)
=

(
CTx 0

0 CTy

)(
NTx

NTy

)
(10)

where CTx and CTy are the x and y axes calibration factors in [mm/counts] for the tilt QPD and
NTx and NTy are the number of counts of QPD x and y direction output.

In principle, the x direction of the QPD measures roughly the yaw component and y direction
measures roughly pitch. However, since the beam will bounce off a steering mirror before hitting the
tilt QPD, a slight tilt in the steering mirror will rotate the image at QPD hence x and y do not
necessarily align with yaw and pitch.
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So, we need to introduce a rotational transformation from QPD coordinate system to yaw-pitch
coordinate system.

and substituting (10) and (9) into (8), we get:(
cos(ϕT ) sin(ϕT )
−sin(ϕT ) cos(ϕT )

)(
CTx 0

0 CTy

)(
NTx

NTy

)
=

(
2ry 0
0 2rp

)(
θyaw
θpitch

)
(11)

and by multiplying the inverse of the beam length matrix and introducing a conversion factor, K,
we get: (

θyaw
θpitch

)
= K

(
1/2ry 0

0 1/2rp

)(
cos(ϕT ) sin(ϕT )
−sin(ϕT ) cos(ϕT )

)(
CTx 0

0 CTy

)(
NTx

NTy

)
(12)

where K is 103 [µm/mm] so the final unit of yaw and pitch is in micro-radians and ϕT is the angle
between the ’yaw’ axis and the x axis on the Tilt QPD plane. We will discuss later on how to obtain
this ϕ in general.

Now we obtained a 2x2 matrix which convert number of counts into tilt. This matrix can be
directly plugged into the OL2EUL matrix in the MEDM OpLev screen for a temporary tilt OpLev.
This is only temporary because at the beginning of this section we eliminated XTM in equation (2).
So, in reality, each of the yaw and pitch we obtained from this OL2EUL matrix contained a little bit
of XTM which eventually we will need to get rid of. But, we will need to calculate this XTM before
we can subtract it from XTilt.

5 Length Sensing OpLev

Similar to that we have done for the tilt sensing OpLev, using the ray transfer matrix, we can write:(
XLen

θLen

)
=

(
1 D
0 1

)(
1 0

−1/f 1

)(
1 L
0 1

)(
XTM

θTM

)
(13)

where

• XLen is the displacement of the ray at the Length QPD plane

• θLen is the angle between the ray and the optical axis at the Length QPD plane

• D is the distance between the lens and the Length QPD

• f is the focal length of the lens

• L is the distance between the TM and the lens

• XTM is the displacement of the ray at the TM plane and

• θTM is the angle of the ray at the TM plane

simplifying: (
XLen

θLen

)
=

(
1 −D/f (1 −D/f)L+D
−1/f 1 − L/f

)(
XTM

θTM

)
(14)

And again, since the QPD can only give information of the displacement of the beam, so we write
the displacement:

XLen = (1 −D/f)XTM + ((1 −D/f)L+D)θTM (15)

Now, there are two particular position where we can place the QPD that would make either the
displacement or the angle term vanishes.
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if we place the QPD at D = f , the equation becomes:

XLen = fθTM (16)

and if we place the QPD at D = Lf/(L− f), the equation becomes:

XLen = (−f/(L− f))XTM (17)

So, we can place the QPD in these two positions so it is only sensitive to either tilt or longitudinal
displacement. However, the argument for not using D = f is that the sensitivity is low compared to
the case we discussed as shown by equation (8). In practice, f is usually a few times smaller than ry or
rp. So we tend to use the tilt sensing QPD without a lens because the sensitivity is higher that way.

However, for length sensing QPD, we can put it at D = Lf/(L − f) so tilt information is filtered
out and only longitudinal displacement information is left. And the relationship between longitudinal
displacement and XTM is discussed below:

From the above figure, XTM is the displacement of the light beam when the test mass is shifted in
the longitudinal direction. Blue ray is the ray after the shift while red ray is the original beam. From
geometry, we can derive:

XTM = 2(Long)sin(α) (18)

where Long is the longitudinal displacement of the test mass and α is the angle of incidence.
As can be seen, if the angle of incidence becomes zero, XTM will also become zero meaning that

we can never detect see any longitudinal displacement and this is why it is mentioned that we must
use a non-zero angle of incidence.

With that in mind, we substitute (18) into (17):

XLen = (−f/(L− f))(2(Long)sin(α)) (19)

Similarly, XLen is just the coordinate of the beam as seen from the output from the length QPD,
so,

XLen =

(
xlen
ylen

)
=

(
CLx 0

0 CLy

)(
NLx

NLy

)
(20)
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Where (xlen,ylen) is the coordinate [mm] of the beam spot given by the number of counts (NLx,NLy)
showed at the length QPD output which is calibrated with a calibration factor of (CLx

, CLy) [mm/counts]
Again, the output of of the QPD due to longitudinal motion does not necessarily align with one of

the axis of the QPD coordinate system. So, we need to use a rotational transformation to express the
beam coordinate in the longitudinal axis while receiving QPD coordinates. However, in this case, since
we are only interested in one vector, namely the longitudinal displacement, we will need to establish
another arbitrary axis, v, for the rotational matrix to work. So, in principle, we will measuring
something in the v channel but we are going to transform the coordinates so that signal in the v
channel is minimized.

from the figure above, the Long axis is the ”longitudinal” axis that we are interested in and we are
getting outputs from the QPD in (xlen, ylen). So, we can apply a rotational transform:(

cos(ϕT ) sin(ϕT )
−sin(ϕT ) cos(ϕT )

)(
xlen
ylen

)
= Xlen (21)

substituting into (21) and (20) into (19),(
v

Long

)
= K(f − L)/(2fsin(α))

(
cos(ϕL) sin(ϕL)
−sin(ϕL) cos(ϕL)

)(
CLx 0

0 CLy

)(
NLx

NLy

)
(22)

where, as a reminder, Long is the Longitudinal displacement, v is the arbitrary axis perpendicular
to Long. K is the conversion factor [µm/mm]. f is the focal length of the lens, L is the distance
between the Test mass and the lens, α is the incidence angle, ϕL is the angle between the Long axis and
the QPD y axis, CLx and CLy are the calibration factors in length QPD x and y direction respectively
(in [mm/counts]). NLx and NLy are the number of counts in the length QPD x and y axis respectively.

So now we obtained another equation relating longitudinal displacement and the number of counts
read from the len QPD outputs. This transformation matrix can be plugged directly into the MEDM
OL2EUL matrix to transform number of counts to displacement. Keep in mind the v is just an
arbitrary axis so we cannot actually read anything from that channel with the MEDM screen. (We
can only implement the first equation in (22) into the OL2EUL matrix, although it would be nice if
we add another arbitrary channel v which to facilitate diagonalization.) Except we can firstly set ϕL

to zero, so v aligns with x and we can use the x and y channel to represent the v and Long channel
for further diagonalization purposes.

6 OpLev Diagonalization

So far I have only derived the equation needed for the OL2EUL matrix. There’s an important pa-
rameter showed up in each equation, namely ϕ, which we still need to obtain. After obtaining that
parameter, we will be able to derive the transformation matrixs applying on the QPDs xy outputs so
that we can tell longitudinal, pitch and yaw separately. And, this process is called diagonalization.
Without diagonalization, the raw signals, (NTx, NTy, NLx, NLy), which is weirdly named (TILT YAW,
TILT PIT, LEN YAW, LEN PIT) in the MEDM OpLev screen, from QPDs each contain information
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about more than one variable, say in the case of tilt QPD, NTx will contain mostly yaw information
but with a little bit of pitch information, so those channel will not be helpful for signal feedback.
(Imagine controlling the yaw motion with signals containing pitch and yaw). So we need to decouple
the degrees of freedom from each other and what we need to do is to look particular ϕT and ϕL in
equation (22) and (12) so that the diagonalized channels (Long, θpitch, θyaw) tell exactly long, pitch
and yaw. In short, we get coordinates in x and y and we apply transformation to that coordinate to
obtain long (in the case of length QPD) or pitch and yaw separately (in the case of tilt QPD)

Mathematically, we need a 3x4 transformation matrix to transform the raw signals:

LongθPitch

θyaw

 =

A B C D
E F G H
I J K L



NTx

NTy

NLx

NLy

 (23)

We derived the equations for each A, B, C...L which are inside the equations (22) and (12) (Al-
though (12) is not technically correct because it doesn’t decouple pitch and yaw from Longitudinal
displacement, we will assume it is correct and keep using the purpose of this section)

In principle, we can diagonalize the signals in two ways, by setting DC offsets or by measuring
power spectrum.

For the former method, we simply inject DC actuations to the degree of freedom that we are
interested in so that it moves purely in that freedom and we measure the changes with the non-
diagonalized OpLev. By actuating the degrees of freedom separate, we can plot the separate beam
traces in the QPDs coordinate systems and, in theory, the particular trace will be aligned with the
axis corresponding to the degrees of freedom we were interested in. And then, we can simply calculate
the angle between that trace and x or y axis and that angle shall be ϕT or ϕL.

To exemplify, assume we actuate the test mass in pure yaw direction. Doing so, by monitoring the
tilt QPD signals, we can plot:

Where the red dots are the data points taken the tilt QPD channel while actuating yaw and the
red trace is the linear fit of those data points. In principle, this trace will be aligned with the actual
”yaw” axis in the tilt QPD frame. So, the angle is just the arctan of the slope of this line.

As can be seen, this method is very easy to implement and what we have to do is simply actuating
the TM in yaw and in longitudinal direction in order to obtain ϕT and ϕL respectively.

Yet, this accuracy of this method will not be great. This is because pure direction actuation is
not always guaranteed. Although we have all actuators calibrated, when we put them into the actual
suspension system, we cannot make sure that there is no error and that they actuate the system as
they should, given a certain input signal. If we assume they can drive the system accurately according
to a particular input signal, we wouldn’t need sensors for them at all. So, we need sensors for actuators
so that they can actuate the TM in pure yaw. But we didn’t have the sensors, namely the OpLev
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we are now trying to setup. Therefore, we this pure yaw actuation is not very accurate and in fact
it might have driven the TM in all directions besides yaw. Although it is said that this method of
diagonalization is not very precise, this method should be included into the standard procedure so to
estimate roughly the angle between the axes which can be compared with the results we will obtain
later with the power spectrum method.

The power spectrum method is more accurate in determining the rotational transformation for the
diagonalization matrix simply because of the fact that the test mass vibrates in different of degrees of
freedom with distinguishable natural frequencies. With the help of the simulation software SUMCOM,
we are able to pinpoint the eigenmodes and the eigen-frequencies that we are interested in (in this
case, TM longitudinal, pitch and yaw). In theory, we should see a peak at a particular frequency if we
plot power spectrum the signal detecting that degree of freedom while exciting it along with all other
degrees of freedom that it might be coupled to.

Ideally, if the signal is perfectly diagonalized, the yaw channel will only measure yaw and the plot
should look like the following red line:

where f0yaw is the corresponding eigen-frequency of the yaw eigenmode and f0pitch is the eigen-
frequency of the pitch eigenmode.
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However, a non-diagonalized signal will give you two peaks, one at its own resonance frequency
and one at the frequency of the degree of freedom it is coupled with.

Let’s go back to the previous section where I derived the diagonalization matrix (equation (12))
with a rotational transformation. Let’s also say that we set ϕT to zero and then began measuring the
power spectrum of TM yaw and pitch while introducing noise to the system and it ended up showing
the result exactly like the above blue and red power spectrum.

Blue line is the power spectrum of the pitch signal and red line is the power spectrum of the yaw
signal. at frequency equals to f0pitch, there is a small peak in the red line while a larger peak for the
pitch signal. This means that when test mass vibrates in the pitch mode, there is some ”a” amount of
magnitude of pitch that is detected in the pitch channel while a ”b” magnitude of pitch that is shown
up the yaw channel. In an ideal case, all pitch motion should show up in the pitch channel. However,
some of them ended up in the yaw signal.

Also please note that the ground reference for measuring ”a” and ”b” is almost arbitrary. In
theory, we want to measure the height of the peaks from it’s original height without the peak so we are
measuring the additional effect of coupling. But since we cannot say we are sure what is the original
height, so I am just going to say the reference of ”a” and ”b” is just roughly at the original place
without the height. For ”a”, it doesn’t matter very much since the power spectrum is plotted in log
scale. In effect, one end is at some 102 magnitude and the other end is in the order of 100. So, you can
measure it from 100 or 100.1 and the difference is minimal. But for ”b”, that is the coupling from pitch
to yaw, since both ends are in the order of 100 or 101, we need to guess the original magnitude of that
power spectrum without any coupling. But, from experience, using the cursor function in diaggui and
estimating the orignal position using interpolation roughly is probably fine to decouple the degrees of
freedom from obvious to unnoticeable.

From the result of the above power spectrum, we can tell that the the real pitch and yaw axis are
tilted relative to signal axis like:
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Where k is the 2 times effect beam length of the pitch (don’t get confused by this k, if you don’t
understand why it exists at this point then just ignore it). a and b are just the height of the peaks of
pitch and yaw signal respectively at f0pitch. The red axes are the axes where the real pitch and yaw
motion would cause the beam to trace at the tilt QPD plane. Pitch signal and Yaw signal are just
”θpitch” and ”θyaw” we derived in (12). So, from this figure, we can derive the rotational angle that
we need

ϕT = − arctan(kb/ka) = − arctan(b/a) (24)

It is negative because ϕT is positive counter-clockwise as defined. Note that the k constant doesn’t
matter because it will just cancel out itself in the end. But this is not the end of the story because
what we can tell from the power spectrum is that when the test mass moves in pitch direction, ”b”
amount will show up in the yaw signal and ”a” amount will show up in the pitch signal but it doesn’t
tell really tell the direction of ”a” and ”b”. So, mathematical we have four solutions of ϕT .

ϕT = ± arctan(b/a)or ± arctan(b/a) + π (25)

As in,

All four rotations will give ”a” magnitude of pitch showing in pitch channel and ”b” magnitude
of pitch showing up in yaw channel. To obtain the real case, first we can eliminate by defining the
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direction of xtilt and ytilt axis of the QPD so we can always roughly align positive pitch and positive
yaw with positive xtilt and ytilt (or ytilt and xtilt if it is more convenient). So, the latter two solutions
can be always be rejected by aligning the axes manually.

For the former solutions, ± arctan(b/a), we can note that for ϕT = + arctan(b/a), real pitch will
give positive pitch signal and negative yaw signal. While for the case of ϕT = − arctan(b/a) real pitch
will give positive pitch signal and positive yaw signal. So, we can distinguish by looking at the phase
diagram of the transfer function (assuming we are exciting the pitch and yaw motion with pitch and
yaw input).

For example if we obtain this kind of result:

That means whatever real pitch the yaw channel is measuring, is opposite to that of the pitch
channel. That means we can decide ϕT = + arctan(b/a) because that is the case where positive
real pitch will show up as positive pitch and negative yaw in our signals. Conversely, if the red
trace in the phase diagram follows the blue line towards −π, that means the other way around and
ϕT = − arctan(b/a), which would mean positive real pitch shows up as positive pitch and yaw in the
digital system.

So after applying the rotational transformation using equation (12) (and (22) for the longitudinal
case), we should repeat the process to make sure we are measuring real pitch and real yaw only in
their corresponding signal channels.

7 Longitudinal to Tilt Coupling

With the tools in sections above, we can make sure that the longitudinal channel measures maximal
longitudinal, pitch channel doesn’t measure yaw and yaw channel doesn’t measure pitch. However, in
the beginning I cheated and say

XTilt = rθTM (26)

recall XTilt is the displacement of the OpLev beam showing up at the tilt QPD plane and θTM
is the angle between the original OpLev beam at the TM plane and the OpLev beam when the test
mass is tilted. And r is the effective beam length from the TM to tilt QPD. However, to be completely
accurate, from the definition of ray transfer matrix
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(
XTilt

θTilt

)
=

(
1 r
0 1

)(
XTM

θTM

)
(27)

so,

XTilt = XTM + rθTM (28)

where XTM is really the parallel displacement of the OpLev beam at the TM plane. And, XTM is
only related to longitudinal displacement, XTM = 2(Long) sin(α), so, recalling from (22):

(
Long

)
= (f − L)/(2fsin(α))

(
−sin(ϕL) cos(ϕL)

)(CLx 0
0 CLy

)(
NLx

NLy

)
(29)

ignore the conversion factor K for the moment substituting (29) into XTM = 2(Long) sin(α),

(
XTM

)
= ((f − L)/f)

(
−sin(ϕL) cos(ϕL)

)(CLx 0
0 CLy

)(
NLx

NLy

)
(30)

With that, (7) and (10) we can rewrite (28) into

(
CTx 0

0 CTy

)(
NTx

NTy

)
= ((f−L)/f)

(
−sin(ϕL) cos(ϕL)

)(CLx 0
0 CLy

)(
NLx

NLy

)
+

(
2ry 0
0 2rp

)(
θyaw
θpitch

)
(31)

Simplifying,

(
CTx 0

0 CTy

)(
NTx

NTy

)
= ((f − L)/f)

(
−CLxsin(ϕL) CLycos(ϕL)

)(NLx

NLy

)
+

(
2ry 0
0 2rp

)(
θyaw
θpitch

)
(32)

Apply rotational transformation to XTilt so we can express XTilt in yaw-pitch coordinate frame,
with more simplification:

(
CTxcos(ϕT ) CTysin(ϕT )
−CTxsin(ϕT ) CTycos(ϕT )

)(
NTx

NTy

)
= ((f−L)/f)

(
−CLxsin(ϕL) CLycos(ϕL)

)(NLx

NLy

)
+

(
2ry 0
0 2rp

)(
θyaw
θpitch

)
(33)

Comparing this equation to (12), this is effectively saying that for the previous measurements, there
are some components of XTM that was added into the yaw and pitch that we were measuring:
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So, what we should really do is break XTM into components form so it is expressed in the same
basis of yaw and pitch. And then, subtract it from the measurments XTilt. For convenience, we will
simplify XTM and then add also NTx and NTy so XTilt can subtract it.

XTM = ((f − L)/f)
(
CLxcos(ϕL) CLysin(ϕL)

)(NLx

NLy

)
(34)

= ((f − L)/f)

(
−sin(γ)
cos(γ)

)(
−CLxsin(ϕL) CLycos(ϕL)

)(NLx

NLy

)
(35)

= ((f − L)/f)

(
CLxsin(ϕL)sin(γ) −CLycos(ϕL)sin(γ)
−CLxsin(ϕL)cos(γ) CLycos(ϕL)cos(γ)

)(
NLx

NLy

)
(36)

= ((f − L)/f)

(
0 0 CLxsin(ϕL)sin(γ) −CLycos(ϕL)sin(γ)
0 0 −CLxsin(ϕL)cos(γ) CLycos(ϕL)cos(γ)

)
NTx

NTy

NLx

NLy

 (37)

and for XTilt

XTilt =

(
CTxcos(ϕT ) CTysin(ϕT )
−CTxsin(ϕT ) CTycos(ϕT )

)(
NTx

NTy

)
(38)

=

(
CTxcos(ϕT ) CTysin(ϕT ) 0 0
−CTxsin(ϕT ) CTycos(ϕT ) 0 0

)
NTx

NTy

NLx

NLy

 (39)

So, the final assembly would be:

rθTM = XTilt −XTM (40)

=

(
CTxcos(ϕT ) CTysin(ϕT ) −((f − L)/f)CLxsin(ϕL)sin(γ) ((f − L)/f)CLycos(ϕL)sin(γ)
−CTxsin(ϕT ) CTycos(ϕT ) ((f − L)/f)CLxsin(ϕL)cos(γ) −((f − L)/f)CLycos(ϕL)cos(γ)

)
NTx

NTy

NLx

NLy


(41)

≡
(
A B C D
E F G H

)
NTx

NTy

NLx

NLy

 (42)

so applying the inverse of r and introducing the conversion factor, we get:
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(
θyaw
θpitch

)
= K

(
1/(2ry) 0

0 1/(2rp)

)(
A B C D
E F G H

)
NTx

NTy

NLx

NLy

 (43)

(
θyaw
θpitch

)
= K

(
1/(2ry) 0

0 1/(2rp)

)
CTxcos(ϕT ) −CTxsin(ϕT )
CTysin(ϕT ) CTycos(ϕT )

−((f − L)/f)CLxsin(ϕL)sin(γ) ((f − L)/f)CLxsin(ϕL)cos(γ)
((f − L)/f)CLycos(ϕL)sin(γ) −((f − L)/f)CLycos(ϕL)cos(γ)


T 

NTx

NTy

NLx

NLy


(44)

I take the transpose of that matrix so I can show the actual terms in the equation.
Note that γ is the angle between the XTM axis and the ”pitch” axis. This angle can be found

using the method described in the diagonalization section. What we have to do is to plot the power
spectrum of TM pitch and yaw channel while at least exciting TM in longitudinal direction. And you
know what to do next.

In summary, use (12) for Tilt sensing OpLev before we get a Length sensing OpLev and use (22)
for the Length sensing OpLev and finally use (44) Tilt sensing OpLev.

And this shall be the end of story, except when we consider the misplacement of the Length sensin
OpLev, there will be some Tilt to longitudinal coupling and we might want to decouple them. But
I will leave the derivation to you since 1) the coupling effect shall be minimal, 2) if you understand
the derivation in this document, you will have no problem deriving the final ultimate equation for the
OL2EUL matrix.

8 Minor Notes

Reminder: NTx, NTy, NLx and NLy really refers to TILT YAW, TILT PIT, LEN YAW and LEN PIT
in the MEDM screen respectively. Or, not respectively if you like to define weird coordinate system
for the QPD.

My email: astrotec@connect.hku.hk or 1155116690@link.cuhk.edu.hk Please notify me if you find
anything wrong, or if you find my equation works.
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