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TGWG conference (2018)
‧ Time: Oct. 7(Sun.)-10(Wed.) 
‧ Venue: Tamkang University in New Taipei City 
‧ Invited Speaker:  
- Lior Burko  on Strong gravity  
- Kipp Cannon on Data analysis  
- Yan-Bei Chen on Quantum measurements or 
gravity theory related  

- Qing-Guo Huang on Primordial black holes 
- Tjonnie Li on Parameter estimations 
- Amy Lien on Multi-Messenger Astronomy  
- Rafael Porto on EFT of Post-Newtonian (To be 
Confirmed) 

- Jan Steinhoff On Gravitational waveform 
construction  

- Barry Wardell on self-force



Summary

‧ EOB waveform generation (Kagali) 
‧ CBC search with GPU 
‧ Deep Learning



EOB Waveform Generation

‧ SEOBNRE model: Spin+EOB+NR+Eccentricity (Cao & 
Han 2017) 

- dynamics of two bodies, presented by Hamiltonian 
- GW emitted by binary system (quasicircular + 
eccentric)  

- radiation-reaction force

Guo-Zhang Huang (M. Student)



Consistency of SEOBNRv1 and 
SEOBNRE



Comparison with SPEC 
Simulation
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GPU acceleration  

‧ Motivation: 
- learning search algorithm, but lack of computing 
power 

- not only for the search, but maybe applied to the 
other some packages in the softwares (e.g. Haino 
san’s parameter estimation)

Han-Shiang Kuo (M. Student)



Advantages on GPU
‧ High throughput oriented 
‧ Compute cores occupy most part of die 
‧ Good for Linear Algebra operations, FFT, etc

Nvidia web.



Specs of Selected GPUs

Double 
precision  

Single 
precision 

Memory Memory 
Bandwidt

Cores

GTX1080 0.35Tflops 8.87Tflops 8GB 320GB/s 2560

K80 2.91Tflops 8.73Tflops 24GB 480GB/s 4992

Titan X 0.31Tflops 10.9Tflops 12GB 480GB/s 3072

P100 4.7Tflops 9.3Tflops
16GB 

12GB

732GB/s 
549GB/s

3584

Flops: Floating-point operations per seconds



start

apply high-pass filter

FFT

Read PSD estimated 
from long data

Estimate PSD

Read Strain data

exceed threshold

Clustering MF and chi-square  

Calculate boundary for  
chi-square veto

Matched-filter

Loop for each template bank

generate template bank

Calculate detection statistics

add candidate event  
to trigger list

 End of Loop

yes

ρ > ρ *

No

yesNo

             
Flowchart by Tagoshi-san and Yuzurihara-san  
Usman et al. 2016 
Allen et al. 2012



Speed-up Results
‧ P100 GPU 
‧ LIGO data with 4096 sec. 
‧ Chunk size =512 secs with 1/2 
overlap. 

‧ 110000 IMR templates

‧ Reading data & PSD estimation ~10 sec 
‧ Template generation ~ 150 mins 
‧ Matched-filter + chi2 veto~ 50 mins 
‧ About 300 times speed up comparing 
with one cpu core (E2630v2)

  cufftHandle plan; 
  cufftPlan1d( &plan, nt, CUFFT_Z2D, batch); 
  cufftExecZ2D( plan, dfdata, dtdata); 
  cufftDestroy( plan);



Single Precision Test @K80

4 times faster for single-precision than double-precision at K80



Deep Learning
Wei-Ren Xu(M. student) 
Jin-Yau Tang (U) 
Yukari Uchibori (U)

‧ Training part:  
- 1 second data with 8192 sampling rate 
- whiten Signal(by EOBNRv2) + white noise 9462 
- Pure white noise 8000 
- Mass range: 5-75 Ms in steps of 0.5Ms, mass 
ratio<10 

‧ Testing part:  
- 3492 test data (S+N/N) 
- Running time about a few seconds 
(accelerated by K80)
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Input vector (size: 8192)
1 Reshape matrix (size: 1×8192)
2 Convolution matrix (size: 64×8177)
3 Pooling matrix (size: 64×2044)
4 ReLU matrix (size: 64×2044)
5 Convolution matrix (size: 128×2014)
6 Pooling matrix (size: 128×503)
7 ReLU matrix (size: 128×503)
8 Convolution matrix (size: 256×473)
9 Pooling matrix (size: 256×118)
10 ReLU matrix (size: 256×118)
11 Convolution matrix (size: 512×56)
12 Pooling matrix (size: 512×14)
13 ReLU matrix (size: 512×14)
14 Flatten vector (size: 7168)
15 Linear Layer vector (size: 128)
16 ReLU vector (size: 128)
17 Linear Layer vector (size: 64)
18 ReLU vector (size: 64)
19 Linear Layer vector (size: 2)

Output vector (size: 2)

FIG. 6. Architecture of deeper neural network. This is the deeper
version of the CNN, modified to take time-series inputs, that we de-
signed for parameter estimation. The input is the time-series sampled
at 8192Hz and the output is the predicted value of each parameter.
This can be converted to a classifier by adding a softmax layer after
layer 19 to obtain the probability for a detection. Note that the num-
ber of neurons in layer 19 can be increased to add more categories for
classification or more parameters for prediction. The 2 neurons in the
final layer outputs the 2 parameters corresponding to the individual
masses of BBHs. The size of this net is approximately 23MB.

(cuDNN) [44] for acceleration with NVIDIA GPUs. We used
the ADAM [63] method as our learning algorithm.

During this process, we developed a new strategy to improve
the performance and reduce training times of the DNNs. By
starting off training the predictor on inputs having high SNR
(� 100) and then gradually increasing the noise in each subse-
quent training session until a final SNR distribution randomly
sampled in the range 5 to 15, we observed that the perfor-
mance can be quickly maximized for low SNR, while remain-
ing accurate for signals with very high SNR. For instance, we
obtained about 11% error when trained using this scheme with
gradually decreasing SNR and only about 21% mean error at
parameter estimation on the test set when directly trained on
the same range of SNR (5-15). Furthermore, we found that the
classifier performs significantly better (with an increase from
96% to 99% accuracy on one of our test sets) when its initial
weights are transfered from the fully trained predictor, i.e., the
classifier was created by simply adding a softmax layer to the
trained predictor and then trained on the dataset of signals and
noise. We expect these techniques would be useful for train-
ing neural networks, in general, with noisy data.

FIG. 7. Sensitivity of detection with smaller net. This is the sen-
sitivity (fraction of signals detected) of the shallower classifier as a
function of SNR on the test set. Note that the sensitivity was mea-
sured with the same classifier after training once over the entire range
of SNR, i.e., without specifically re-training it for each SNR. This
curve saturates at sensitivity of 100% for SNR � 10, i.e, signals with
SNR � 10 are always detected. The single detector false alarm rate
was tuned to be about 0.5% for this classifier. Note that the optimal
matched-filter SNR is on average proportional to 12.9 ± 1.4 times
the ratio of the amplitude of the signal to the standard deviation of
the noise for our test set. This implies that Deep Filtering is capable
of detecting signals significantly weaker than the background noise.

FIG. 8. Sensitivity of detection with deeper net. This is the sen-
sitivity of the deeper classifier as a function of SNR on the test set.
Note that this sensitivity was also measured with the same classifier
after training once over the entire range of SNR, i.e., without specifi-
cally re-training it for each SNR. This curve saturates at sensitivity of
100% for SNR � 9, i.e, signals with SNR � 9 are always detected.
The single detector false alarm rate was tuned to be approximately
0.5% for this classifier.

IV. RESULTS

We trained our classifier to achieve 100% sensitivity for
signals with SNR � 10 and a single detector false alarm
rate less than 0.6%. Note that the false alarm rate of Deep

Architecture of deep neural network   
(George & Huerta 2018)



Deep Learning
‧ Training part:  
- 1 second data with 8192 sampling rate 
- whiten Signal(by EOBNRv2) + white noise 
9462 

- Pure white noise 8000 
- Mass range: 5-75 Ms in steps of 0.5Ms, 
mass ratio<10 

‧ Testing part:  
- 3492 test data (S+N/N)



Results for Detection
JID:PLB AID:33439 /SCO Doctopic: Astrophysics and Cosmology [m5Gv1.3; v1.227; Prn:27/12/2017; 16:11] P.4 (1-7)

4 D. George, E.A. Huerta / Physics Letters B ••• (••••) •••–•••
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Fig. 4. Sensitivity of detection with real LIGO noise. The curve shows the sensitiv-
ity of detecting GW signals injected in real LIGO noise (from LOSC) from our test 
set using Deep Filtering and with matched filtering with the same template 
bank used for training. Note that the SNR is on average proportional to 10 ± 1.5
times the ratio of the amplitude of the signal to the standard deviation of the noise 
for our test set. This implies that we are capable of detecting signals significantly 
weaker than the background noise. While matched-filtering has the advantage of 
being optimized with the PSD of the LIGO noise in the test set, Deep Filtering
was only trained on noise from other events, therefore our results demonstrate the 
ability of the CNNs to automatically generalize to non-stationary LIGO noise having 
different PSDs without retraining.

Fig. 5. Error in parameter estimation with real LIGO noise. This shows the mean 
percentage absolute error of estimating masses on our testing signals at each SNR, 
injected in real LIGO noise from events not used for training, compared to matched 
filtering using the same template bank that was used for training. While the mean 
error of matched-filtering, with the same template bank used for training, is always 
greater than 11% at every SNR we can see that the Deep Filtering method is 
able to interpolate to test set signals with intermediate parameter values.

parameters are consistent, this may not be necessary since run-
ning matched-filtering pipelines with a few templates close to our 
predicted parameters can quickly eliminate these false alarms.

Our predictor was able to successfully measure the component 
masses given noisy GW signals, that were not used for training, 
with an error lower than the spacing between templates for op-
timal matched-filter SNR ≥ 15.0. The variation in relative error 
against SNR is shown in Fig. 5. We observed that the errors follow 
a Gaussian distribution for each region of the parameter space for 
SNR greater than 10. For high SNR, our predictor achieved mean 
relative error less than 10%, whereas matched-filtering with the 
same template bank always has error greater than 10%. This im-
plies that Deep Filtering is capable of interpolating between 
templates seen in the training data.

Although, we trained only on simulated quasi-circular non-
spinning GW injections, we applied Deep Filtering to the 
LIGO data streams containing a true GW signal, GW150914, us-
ing a sliding window of 1 s width with offsets of 0.2 s through 

Fig. 6. Examples of sine-Gaussian glitches. These are some samples of simulated 
sine-Gaussian glitches from our test set. We found that our classifier was able to 
correctly differentiate GW signals from these glitches and classify them as noise 
when they were injected into real LIGO data streams. This suggests that Deep 
Filtering can be extended to create a unified pipeline for glitch classification 
along with signal detection and parameter estimation.

the data around each event from each detector. This signal was 
correctly identified by the classifier at the true position in time 
and each of the predicted component masses were within the pub-
lished error bars [2]. There were zero false alarms after enforcing 
the constraint that the detection should be made simultaneously in 
multiple detectors. This shows that deep learning is able to gener-
alize to real GW signals after being trained only with simulated 
GW templates injected into LIGO noise from other events with 
different PSDs. A demo showing the application of Deep Fil-
tering to GW150914 can be found here: tiny.cc/CNN.

The data from the first LIGO event, that was used for testing, 
contained a large number of non-Gaussian transient noise called 
glitches. Some of these can be seen in Fig. 2. Therefore, our re-
sults demonstrate that the Deep Filtering method can auto-
matically recognize these glitches and classify them as noise. This 
suggests that by adding additional neurons for each “glitch” class,
Deep Filtering could serve as an alternative to glitch clas-
sification algorithms based on two-dimensional CNNs applied to 
spectrograms of LIGO [44,46] or machine learning methods based 
on manually engineered features [58–60].

Furthermore, we conducted some experiments to show the re-
silience of Deep Filtering to transient disturbances, with a 
simulated set of sine-Gaussian glitches, which cover a broad range 
of morphologies found in real LIGO glitches, following [59] (see 
Fig. 6 for some examples). We ensured that a different set of fre-
quencies, amplitudes, peak positions, and widths were used for 
training and testing. We then injected some of these glitches into 
the training process and found that the classifier CNN was able to 
easily distinguish new glitches from true signals, with a false alarm 
rate less than 1%, using only single detector inputs. When we ap-
plied the standard naive matched-filtering algorithm to the same 
test set of glitches, approximately 30% of glitches were classified 
as signals due to their high SNR. This is because matched-filtering 
is unable to distinguish signals from loud glitches having simi-
lar frequencies. Note that additional signal consistency tests and 
coherence across detectors can be enforced to decrease this false 
alarm rate for both methods.

We then tested the performance of Deep Filtering, when a 
signal happens to occur in coincidence with a glitch, i.e., the signal 
is superimposed with both a glitch and real LIGO noise (see Fig. 7). 
We trained the CNNs by injecting glitches from the training set and 
measured the sensitivity of the classifier on the test set signals su-
perimposed with glitches sampled from the test set of glitches. We 
found that over 80% of the signals with SNR of 10 were detected, 

snr=max(h)/(sd of noise)



Results for Mass Estimation
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Input vector (size: 8192)
1 Reshape matrix (size: 1×8192)
2 Convolution matrix (size: 64×8177)
3 Pooling matrix (size: 64×2044)
4 ReLU matrix (size: 64×2044)
5 Convolution matrix (size: 128×2014)
6 Pooling matrix (size: 128×503)
7 ReLU matrix (size: 128×503)
8 Convolution matrix (size: 256×473)
9 Pooling matrix (size: 256×118)
10 ReLU matrix (size: 256×118)
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15 Linear Layer vector (size: 128)
16 ReLU vector (size: 128)
17 Linear Layer vector (size: 64)
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FIG. 6. Architecture of deeper neural network. This is the deeper
version of the CNN, modified to take time-series inputs, that we de-
signed for parameter estimation. The input is the time-series sampled
at 8192Hz and the output is the predicted value of each parameter.
This can be converted to a classifier by adding a softmax layer after
layer 19 to obtain the probability for a detection. Note that the num-
ber of neurons in layer 19 can be increased to add more categories for
classification or more parameters for prediction. The 2 neurons in the
final layer outputs the 2 parameters corresponding to the individual
masses of BBHs. The size of this net is approximately 23MB.

(cuDNN) [44] for acceleration with NVIDIA GPUs. We used
the ADAM [63] method as our learning algorithm.

During this process, we developed a new strategy to improve
the performance and reduce training times of the DNNs. By
starting off training the predictor on inputs having high SNR
(� 100) and then gradually increasing the noise in each subse-
quent training session until a final SNR distribution randomly
sampled in the range 5 to 15, we observed that the perfor-
mance can be quickly maximized for low SNR, while remain-
ing accurate for signals with very high SNR. For instance, we
obtained about 11% error when trained using this scheme with
gradually decreasing SNR and only about 21% mean error at
parameter estimation on the test set when directly trained on
the same range of SNR (5-15). Furthermore, we found that the
classifier performs significantly better (with an increase from
96% to 99% accuracy on one of our test sets) when its initial
weights are transfered from the fully trained predictor, i.e., the
classifier was created by simply adding a softmax layer to the
trained predictor and then trained on the dataset of signals and
noise. We expect these techniques would be useful for train-
ing neural networks, in general, with noisy data.

FIG. 7. Sensitivity of detection with smaller net. This is the sen-
sitivity (fraction of signals detected) of the shallower classifier as a
function of SNR on the test set. Note that the sensitivity was mea-
sured with the same classifier after training once over the entire range
of SNR, i.e., without specifically re-training it for each SNR. This
curve saturates at sensitivity of 100% for SNR � 10, i.e, signals with
SNR � 10 are always detected. The single detector false alarm rate
was tuned to be about 0.5% for this classifier. Note that the optimal
matched-filter SNR is on average proportional to 12.9 ± 1.4 times
the ratio of the amplitude of the signal to the standard deviation of
the noise for our test set. This implies that Deep Filtering is capable
of detecting signals significantly weaker than the background noise.

FIG. 8. Sensitivity of detection with deeper net. This is the sen-
sitivity of the deeper classifier as a function of SNR on the test set.
Note that this sensitivity was also measured with the same classifier
after training once over the entire range of SNR, i.e., without specifi-
cally re-training it for each SNR. This curve saturates at sensitivity of
100% for SNR � 9, i.e, signals with SNR � 9 are always detected.
The single detector false alarm rate was tuned to be approximately
0.5% for this classifier.

IV. RESULTS

We trained our classifier to achieve 100% sensitivity for
signals with SNR � 10 and a single detector false alarm
rate less than 0.6%. Note that the false alarm rate of Deep

input (32,26) input (9,13)

SNR=2

SNR=0.83



Multi-Detector



Computing Power

Taiwania HPC System User Operation Manual 6 
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2.2. Available compute resources 

There are 695 compute nodes (1392 processors and 27856 cores) used in Peta HPC system which in total 
delivers peak compute performance of approximately 1.73 PFLOPS. 694 compute nodes consist of dual CPU 
sockets, each socket comprises Xeon Gold 6148 CPU (20 cores, 2.4 GHz). 1 compute node (Big memory 
node) consists of quad sockets, each socket comprises Xeon Platinum 8160M CPU (24 cores, 2.1 GHz) 
These 695 nodes can be categorized as below: 
z Thin Nodes 

¾ For majority of HPC application 
z Fat nodes 

¾ For HPC application which needs large memory 
z GPU nodes 

¾ For HPC application which uses GPU accelerators 
z Big Memory node 

¾ For special kinds of HPC application which needs very large memory 
 
The summary of compute nodes and their respective resources are listed below: 
Node Type Node 

range 
Total 
units 
(nodes) 

Compute resources per unit (node) 
CPU  
Sockets 

CPU  
cores 

Memory  
(GB) 

Tesla 
P100 

10Gbps 
interface 

480 GB 
SSD 

Thin nodes cn0101 – cn0673 438 2 40 192 - - - 
Thin nodes cn0701 – cn0764 64 2 40 192 - 1 - 
Fat nodes cn0801 – cn0864 64 2 40 384 - - - 
Fat nodes cn0901 – cn0964 64 2 40 384 - - 1 
GPU nodes cn1001 – cn1064 64 2 40 192 4 - - 
Big memory 
node 

cnbm01 1 4 96 6000 - - - 

 

2.3. Available storage resource 

The following storage resources on high-speed storage system are available to users in this HPC system. They 
are mounted as lustre file system which is accessible from all the front end servers as well as from the compute 
nodes via the high-speed OPA network. 
 Storage area Mount point Capacity 
1 Home area /home 0.25 PB 
2 Temporary work area /work1 2.2 PB 
3 Project storage area /project 1.0 PB 
 
 
2.3.1. Home area 
The total capacity of 0.25 PB of home area is used by system users to store their private files. Users can 

compile their program and execute/manage their jobs in this home area. All users by default have 100GB of 
quota in /home. 

‧ budget for renting to next July: 500KNTD, and 250KNTD for next year 
‧ 1.68 NTD/1GPU-hr, and 0.07NTD/1CPU-hr (0.3M GPU-hr or 7M cpu-hr 
till next July) 

‧ Typically they are shared cores, but 3 nodes with GPU are dedicated in 
TGWG 

‧ Largest queue is 2000 cores.

summary of NCHC Taiwanian (from NCHC web.) 


