The 4th KAGRA International Workshop @ Ewha Women's University June 30, 2018

Optimization of the KAGRA sensitivity

Yuta Michimura

Department of Physics, University of Tokyo

Kentaro Komori, Atsushi Nishizawa, Hiroki Takeda, Koji Nagano, Yutaro Enomoto, Kazuhiro Hayama, Kentaro Somiya, Masaki Ando, Sadakazu Haino

Overview

- Developed a new way to optimize the KAGRA sensitivity design based on
 - CBC inspiral range
 - CBC parameter estimation
- Optimization done by Particle Swarm Optimizer YM+, <u>Phys. Rev. D 97, 122003 (2018)</u>
- Studied possible KAGRA+ candidates with budget constraints
 - 40 kg mirror with better coating
 - 400 W laser with squeezing
 - Frequency dependent squeezing

Room Temperature Design

- Seismic noise: reduce as much as possible multi-stage suspensions underground
- Thermal noise: reduce as much as possible larger mirror thinner and longer wires

 Quantum noise: optimize the shape input laser power tune signal recycling parameters

Cryogenic Design is Complicated • Seismic noise: reduce as much as possible multi-stage suspensions heat underground extraction Thermal noise: reduce as much as possible larger mirror thinner and longer wires cryogenic cooling Quantum noise: optimize the shape input laser power tune signal recycling parameters

Grid-based Search is not Scalable

- Sensitivity design is an optimization problem
- Grid-based parameter search
 - deterministic
 - computational cost grows exponentially with number of parameters
- Future GW detectors (like KAGRA+) require more parameters to be optimized
- Almost impossible with grid-based approach

Particle Swarm Optimization!

 Particles search the parameter space based on own best position and entire swarm's best known position

Apply PSO for KAGRA Design

- RSE interferometer
- Cryogenic sapphire test masses

Parameters of Interest

• 7 parameters are relatively easy to be retuned

 Consistent with current designed sensitivity which was optimized with grid-based approach

 Consistent with current designed sensitivity which was optimized with grid-based approach

 Changing suspension fibers and SRM increases BNS IR from 153 Mpc to 169 Mpc (10% increase)

 Changing suspension fibers and SRM increases BNS IR from 153 Mpc to 169 Mpc (10% increase)

Sky Localization Optimization

- Cost function: sky localization of GW170817-like binary
 - 1.25-1.5 Msun at 40 Mpc, inclination 28 deg
 - zero spins, no precession
 - 108 sets of sky location and polarization angle to derive median of sky localization error AdV

 10^{-1}

 10^{0}

sky localization error $[deg^{2}]$

KAGRA

PSO

 10^{1}

- Fisher matrix to estimate the error
 - inspiral waveform to
 3.0 PN in amplitude
 3.5 PN in phase
 - 11 binary parameters
- HLVK global network aLIGO

 Sky localization improved by a factor of 1.3 but inspiral range is reduced by 20%
 0.18 deg²

 Sky localization improved by a factor of 1.6 but inspiral range is reduced by 2%
 0.18 deg²

KAGRA+ with Budget Constraints

Laser

- Let's consider a bit more drastic upgrades
- Suppose you have \$5M for KAGRA+
- Candidates would be

 A. 40 kg mirror with better coating (>\$4M?) and new sapphire fibers (\$1M?) (use existing cryostat and Type-A tower)
 B. 400 W laser (\$3M?) with squeezing (\$1M?) and new sapphire fibers (\$1M?)
 C. Frequency dependent squeezing (\$3M?)
 - and new sapphire fibers (\$1M?)

Plan A: 40 kg Mirror

• Also assumes factor of 2 coating loss angle reduction (no beam size change assumed)

Good for mid frequency improvement → BNS range optimized

T=20.1 K 181 W input thicker fiber 25.0 cm φ1.2 mm (thicker to allow for higher power)

Plan B: 400 W Laser with SQZ

Assumes 10dB input SQZ

Good for high frequency improvement → BNS range optimized

T=29.8 K 330 W input shorter and thicker fiber 20.1 cm φ1.2 mm (high power with high temperature)

Plan C: Freq. Dependent SQZ

Assumes 10dB input SQZ and 100 m filter cavity

Broadband improvement → BNS range optimized

T=21.8 K 85 W input thinner fiber 26.1 cm φ0.8 mm (SQZ helps to ease fiber requirement)

Summary of \$5M Plans

- A. New mirror takes time to fabricate
- B. High power operation is tough
- C. Does it fit in the facility?

	Inspi	BNS localize		
	BBH100	BBH30	BNS	(deg ²)
bKAGRA	353	1095	153	0.183
A. 40 kg mirror	339	1096	213	0.151
B. 400 W laser sqz	117	314	123	0.114
C. Freq. dep. sqz	470	1177	181	0.135

 I like A because of simplicity, but if fabrication of heavier mirrors cannot be done on time, go for C?

Comparison Between 2G and 2G+

 Only Plan B (400W laser with squeezing) can beat A+ (but only slightly)

23

Summary

- Demonstrated sensitivity design with PSO
- Application to KAGRA shows both
 - BNS inspiral range
 - BNS sky localization can be improved by retuning 7 parameters of existing components

YM+, Phys. Rev. D 97, 122003 (2018)

 Also applied to KAGRA+ study and showed optimized sensitivity for 3 candidates Sensitivity data available at <u>JGW-G1808426</u>

Supplementary Slides

PSO Algorithm Initialize particle positions randomly Calculate KAGRA sensitivity strain quantum Calculate cost function Seismic thermal Change smaller than threshold? frequency YES 27 Terminate

PSO Algorithm

PSO Algorithm

Pyswarm

- Python package Pyswarm was used for this work <u>https://pythonhosted.org/pyswarm/</u> <u>https://github.com/tisimst/pyswarm/</u>
- PSO as easy as xopt, fopt = pso(func, lb, ub)
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

PSO for GW Related Research

CBC search

Weerathunga & Mohanty, <u>PRD 95, 124030 (2017)</u> Wang & Mohanty, <u>PRD 81, 063002 (2010)</u> Bouffanais & Porter, <u>PRD 93, 064020 (2016)</u>

- Continuous GW search using pulsar timing array Wang, Mohanty & Jenet, <u>ApJ 795, 96 (2014)</u>
- Cosmological parameter estimation using CMB Prasad & Souradeep, <u>PRD 85, 123008 (2012)</u>
- Gravitational lens modeling Rogers & Fiege, <u>ApJ 727, 80 (2011)</u>
- Sensor correction filter design
 Conor Mow-Lowry, <u>LIGO-G1700841</u> <u>LIGO-T1700541</u>
- Voyager quantum noise optimization input power, arm finesse, SRM transmissivity, homodyne, filter cavity

Pros and Cons of PSO

Fast even for highly multidimensional parameter space

uses entire swarm's information to search

- Requires small number of design variables and little prior information basically only swarm size and termination criterion prior information is only search range
- No guarantee for convergence to global maximum stochastic method
- Do not give error of the parameters (B) no direct information on stability of the solution
- \rightarrow Sounds great for detector design

Other Optimization Methods

- Simulated annealing tuning cooling schedule is troublesome
- Genetic algorithm too many design variables
- Markov chain Monte Carlo tend to be dependent on prior distribution gives error from posterior distribution takes time
- Machine learning if the problem well-modeled, you don't need ML

Swarm Size Determination

- Probability of convergence: ratio of PSO trials resulted within 0.1 Mpc or 10⁻³ deg²
- Increased swarm size until probability of convergence is larger than 90%

number of params	3	5	7
number of particles	10	20	200
number of iterations	52±13	73±16	60±18
probability of convergence	98 %	96 %	91 %

* From 100 PSO trials

Sensitivity Design with PSO is Fast

- Optimization done in O(10) minutes with my laptop
- Number of cost function evaluations

	Grid-based	PSO		
3 params	~10 ⁵	10×(52±13)		
5 params	~10 ⁹	20×(73±16)		
7 params	~10 ¹⁴	200×(60±18)		

* In case optimization is done at precision of 0.1 Mpc

- Computational cost do not grow exponentially with dimensionality of parameter space
- Useful for optimization with many parameters, computationally expensive cost function

IFO Parameter Search Range

	Lower bound	Upper bound	KAGRA Default	Precision
Detuning angle [deg]	86.5 (or 60) *	90	86.5	0.1
Homodyne angle [deg]	90	180	135.1	3
Mirror temperature [K]	20	30	22	0.09
Power attenuation	0.01	1	1	0.02
SRM reflectivity	0.5	1	0.92 (85%)	6e-4
Wire length [cm]	20	100	35	0.02
Wire safety factor	3	30	12.57 (0.8 mm)	0.07

* Considering SRC nonlinearity, maximum detuning is 3.5 deg (see Y. Aso+ <u>CQG 29, 124008</u>)

 Reflecting wall boundary: x=xmax, v=-v if x>xmax x=xmin, v=-v if x<xmin step size which changes BNS inspiral range by 0.1 Mpc

Money

- Detuning angle and homodyne angle can be retuned without additional cost
- Mirror temperature and input power can be retuned without additional cost if power at BS is less than ~1 kW (~100 W entering PRM)
- Change in SRM reflectivity require ~0.1 Million USD
- Change in wire parameters require ~0.01 Million USD/fiber
- Change in wire length additionally require test mass suspension design change at ~0.1 Million USD/mirror
- Change in the test mass require ~0.6 Million USD/mirror (more for heavier ones)

Fiber Length and Diameter

 25cm/φ1.4mm is optimum for BNS IR if other parameters are fixed (default: 35cm/φ1.6mm)

Fisher Matrix Analysis

• Fisher matrix $\Gamma_{ij} = 4 \Re \int_{f_{\min}}^{f_{\max}} \sum_{k} \frac{\partial h_k^*(f)}{\partial \lambda^i} \frac{\partial h_k(f)}{\partial \lambda^j} \frac{\mathrm{d}f}{S_{\mathrm{n,k}}(f)}$ • Covariance

$$\sqrt{\langle (\delta \lambda^i \delta \lambda^j) \rangle} = \sqrt{(\Gamma^{-1})^{ij}}$$

• 11 binary parameters considered mc: chirp mass eta: symmetric mass ratio tc, phic: time and phase for coalescence dL: luminosity distance chis, chia: symmetric/asymmetric spin $\chi_{s/a} = (\chi_1 \pm \chi_2)/2$ thetas, phis: colatitude / longitude of source cthetai: inclination angle psip: polarization angle

Optimization for Fixed Sky Location

• Result for fixed sky location and polarization angle is similar to sky average optimization

Symmetric Spin Optimization

 $\chi_1 + \chi_2$

• Similar to sky localization optimization (focus on high frequencies) $\chi_s = \chi_s$

Asymmetric Spin Optimization

 $\chi_{\mathrm{a}} =$

• Similar to sky localization optimization (focus on high frequencies)

Distance Optimization

• Similar to inspiral range optimization, but slight shift to high frequencies (slight improvement by 2%)

Inclination Angle Optimization

• Similar to distance optimization (PE degeneracy)

BBH100 IR Optimization

 Low power, low temperature with thin and longer fibers (KAGRA+ LF concept)

H Antenna Pattern 1.0 0.0 0.2 0.8 0.4 0.2 0.6 0.8 0.0 0.4 0.6 1.0 antenna pattern antenna pattern Κ 1.0 0.0 0.4 0.6 0.8 0.2 0.6 **0.8**₅₀ **1.0** 0.2 0.4 0.0 antenna pattern

antenna pattern

2G/2G+ Parameter Comparison

	KAGRA	AdVirgo	aLIGO	A+	Voyager
Arm length [km]	3	3	4	4	4
Mirror mass [kg]	23	42	40	80	200
Mirror material	Sapphire	Silica	Silica	Silica	Silicon
Mirror temp [K]	22	295	295	295	123
Sus fiber	35cm Sap.	70cm SiO ₂	60cm SiO ₂	60cm SiO ₂	60cm Si
Fiber type	Fiber	Fiber	Fiber	Fiber	Ribbon
Input power [W]	67	125	125	125	140
Arm power [kW]	340	700	710	1150	3000
Wavelength [nm]	1064	1064	1064	1064	2000
Beam size [cm]	3.5 / 3.5	4.9 / 5.8	5.5 / 6.2	5.5 / 6.2	5.8 / 6.2
SQZ factor	0	0	0	6	8
F. C. length [m]	none	none	none	16	300

51 LIGO parameters from LIGO-T1600119, AdVirgo parameters from JPCS 610, 01201 (2015)

KAGRA Detailed Parameters

K. Komori *et al.*, <u>JGW-T1707038</u>

• Optical parameters

- Mirror transmission: 0.4 % for ITM, 10 % for PRM, 15.36 % for SRM
- Power at BS: 674 W
- Detune phase: 3.5 deg (DRSE case)
- Homodyne phase: 135.1 deg (DRSE case)

Sapphire mirror parameters

- TM size: 220 mm dia., 150 mm thick
- TM mass: 22.8 kg
- TM temperature: 22 K
- Beam radius at ITM: 3.5 cm
- Beam radius at ETM: 3.5 cm
- Q of mirror substrate: 1e8
- Coating: tantala/silica
- Coating loss angle: 3e-4 for silica, 5e-4 for tantala
- Number of layers: 22 for ITM, 40 for ETM
- Coating absorption: 0.5 ppm
- Substrate absorption: 50 ppm/cm

• Suspension parameters

- TM-IM fiber: 35 cm long, 1.6 mm dia.
- IM temperature: 16 K
- Heat extraction: 5800 W/m/K at 20 K
- Loss angle: 5e-6/2e-7/7e-7 for CuBe fiber/sapphire fiber/sapphire blade

• Inspiral range calculation

- SNR=8, fmin=10 Hz, sky average constant 0.442478
- Seismic noise curve includes vertical coupling, vibration from heatlinks and Newtonian noise from surface and bulk

KAGRA Cryopayload

Provided by T. Ushiba and T. Miyamoto

3 CuBe blade springs

MN suspended by 1 Maraging steel fiber (35 cm long, 2-7mm dia.) MRM suspended by 3 CuBe fibers

Heat link attached to MN

IM suspended by 4 CuBe fibers (24 cm long, 0.6 mm dia) IRM suspended by 4 CuBe fibers

• 4 sapphire blades

TM suspended by 4 sapphire fibers (35 cm long, 1.6 mm dia.) RM suspended by 4 CuBe fibers

Platform (SUS, 65 kg)

Marionette (SUS, 22.5 kg

Intermediate Mass (SUS, 20.1 kg, 16 K)

Test Mass (Sapphire, 23 kg, 22 K)

KAGRA Cryostat Schematic

54