
Lock Acquisition in Advanced Virgo (Part II):
DC Readout, Noise Subtraction & Automation

—

Diego Bersanetti
INFN - Sezione di Genova

VIR-0405A-18

93rd JGW Seminar
Jun 15th, 2018



1 DC Readout Scheme

2 Noise Subtraction

3 Automation



DC Readout

1 DC Readout Scheme

2 Noise Subtraction

3 Automation

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 2 / 35



DC Readout

Our Starting Point: ITF Locked at Dark Fringe

ITF locked at dark fringe using Variable
Finesse technique

Main Automatic Alignment loop closed
(DIFFp, PR, BS, COMMp)

Longitudinal degrees of freedom locked:
♦ DARM on B1p_56MHz
♦ MICH on B4_56MHz_Q
♦ SSFS on B4_56MHz_I
♦ PRCL on B2_8MHz

PRCL

MICH

SSFS

DARM

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 3 / 35



DC Readout

Detection Schemes (1)

1st Generation: Heterodyne Detection
The GW signals can be read out with the carrier field at the anti-symmetric port
But we work in Dark Fringe, so we need a reference field at the anti-symmetric port to
which the GW signal can beat against; then, we demodulate the beating signal and extract
the GW information
Solution: we add a macroscopic length difference in the Michelson: only the sidebands are
affected (Schnupp asymmetry), but the interference (due to the carrier) is not
We get a term linear in h (t) and oscillating at the sideband frequency Ω:

P ≃ 8E2
0RJ0 (Ω) J1 (Ω)

F
π
kLLh (t) cos (Ωt− α)

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 4 / 35



DC Readout

Detection Schemes (2)

2nd Generation: Homodyne Detection
We use instead the static DC power at the
anti-symmetric port (DC Readout)
We need a microscopic offset on MICH (or DARM)
to have some light at the asymmetric port
The offset is very small in order to keep the two
cavities inside their resonance width

The power sensed at the output will contain a
static term linear in h (t):

P ≃ 16πR2E2
0J

2
0

L∆l

λ2
L

Fh (t)

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 5 / 35



DC Readout

Detection Schemes (3)

The static carrier field acts as the phase reference against
which the carrier GW signal beats to provide a readable
output
Complication: any spurious field reaching the photodiode
will spoil the sensitivity, as it will increase the total power
but not the optical gain and the signal
The sidebands are an example of this spurious field!
It’s not possible to switch them off since they are needed
to control all the other DOFs of the ITF
We filter them out before the photodiode adding at the
output port two additional short and high-Finesse cavities
called the Output Mode Cleaners

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 6 / 35



DC Readout

Output Mode Cleaners

Two compact monolithic cavities,
bow-tie shape
Temperature stabilization and
control with Peltier actuators

Identification of resonances via temperature scan
PZT actuators to lock the cavities
Several B1* photodiodes available for DC Readout
and monitoring purposes

Credit:DET Team

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 7 / 35



DC Readout

Lock of the OMCs & DC Readout (1)

♦ Lock of OMC1:
we put the offset on DARM while still
locked on RF
OMC1 is locked
we hand-off DARM to the (DC) signal
reflected by OMC2 (B1_s2), which is kept
out of resonance

DARM

PRCL

MICH

SSFS

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 8 / 35



DC Readout

Lock of the OMCs & DC Readout (2)

♦ Lock of OMC2:
while OMC2 scans for the resonance, the
final detection photodiode B1_DC is
already in the sensing matrix of DARM
OMC2 is locked
we remove B1_s2 from the sensing, and
DARM is locked on the designed sensor

DARM

PRCL

MICH

SSFS

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 9 / 35



DC Readout

Lock of the OMCs & DC Readout (3)

The choice of the offset is optimized
w.r.t. the trade-off between optical
gain (slope) and noise (scattered light)
The choice defines how much light
reaches the anti-symmetric port
Offset inter-calibrated w.r.t the
different DARM sensors

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 10 / 35



DC Readout

Lock of the OMCs & DC Readout (4)

Big improvement in the DARM
spectrum from RF to DC Readout
Both B1_PD1 and B1_PD2 used to
reduce noise
Minor tweakings left:
♦ increase of the UGF of DARM
♦ additional Low Noise configuration

for the mirror actuators
♦ marionette reallocation from IMs to

EMs
♦ OMCs in Low Noise by reducing

amplitude of dithering lines

B1p_RF

B1s2_DC

B1_DC

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 11 / 35



Noise Subtraction

1 DC Readout Scheme

2 Noise Subtraction

3 Automation

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 12 / 35



Noise Subtraction

MICH → DARM Coupling

Strong effect on DARM
Frequency-dependent behaviour

Most of the coupling is linear
Online subtraction is possible

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 13 / 35



Noise Subtraction

Alpha Technique: Mechanism

4

4

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 14 / 35



Noise Subtraction

Alpha Technique: Definitions

In principle the coupling factor is simply

α = −GM→B1
GD→B1

But we cannot measure GM→B1 directly
In the real ITF, we have instead:

αnew = αold −
TFM→B1

GDcl · TFD→B1
= αold −

TFM→B1
(
1− TFDpost→Dpre

)
TFD→B1

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 15 / 35



Noise Subtraction

Alpha Technique: Procedure
Procedure:

Noise injections on both DARM and MICH
Important: the DARM/MICH coherence
should be high enough, but without
saturating any of the actuators
Calculate offline the new Alpha, by
computing the TFs and fitting the new filter
Important: Alpha is frequency dependent,
so the frequency window and the
frequency dependence of the weights are
impacting
Upload the new Alpha filter in the online
software

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 16 / 35



Noise Subtraction

Alpha Technique: Evaluation

Several fits are made for different orders
The predicted new suppression is
computed and compared to the current one

Example of filter update after a change in
the MICH loop made the subtraction
under-performing

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 17 / 35



Noise Subtraction

Alpha Technique: Validation

With the new filter, another set of noise
injections will validate the performance

Comparison between the predicted
suppression and the measured one

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 18 / 35



Noise Subtraction

Alpha Technique: Longitudinal Noise Budget

Contribution from MICH gets lower

Old Alpha filter

Coherence drops as well

New Alpha filter

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 19 / 35



Noise Subtraction

Alpha, Beta & Gamma

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 20 / 35



Automation

1 DC Readout Scheme

2 Noise Subtraction

3 Automation

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 21 / 35



Automation

Control Structure (1): Fast and Slow Controls

Acl Acl
PyALP
META

PyALP
META

Python

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 22 / 35



Automation

Control Structure (1): Fast and Slow Controls

Acl Acl
PyALP
META

PyALP
META

Python

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 22 / 35



Automation

Control Structure (2): Middlewares (Cm & TANGO)

↓ DSP ↓
↑ Acl ↑

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 23 / 35



Automation

Automation in LIGO: Guardian

Guardian is a hierarchical, distributed, finite state
machine
Individual automation nodes oversee well defined
sub-domains of the full system, and they can be
managed by other nodes
Each node is a separate daemon process
They are state machine execution engines: they load
system modules that describe the state graph of the
system and the code to be executed during each state
Fully developed in Python: both the core program
(Guardian) and the user apps (the nodes) are
Python code

Paper & overview by J. Rollins:
https://arxiv.org/abs/1604.01456

https://dcc.ligo.org/LIGO-G1400016
D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 24 / 35

https://arxiv.org/abs/1604.01456
https://dcc.ligo.org/LIGO-G1400016


Automation

From Guardian to Metatron

Guardian has been adapted and integrated in the Virgo environment as Metatron
Built on top of the PythonVirgoTools library, it can communicate with all needed devices
Uses the ConfigParser library and the .ini file format for managing
configuration parameters
Fully integrated in the DAQ chain

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 25 / 35



Automation

Metatron: State Graphs

The state graph describes the accessible states of single nodes, and
the allowable transitions between states (edges)

Each node accepts commands in the form of a state request
The shortest path from the current state to the requested state is
computed, and all the states in-between are executed
States may return a jump target, which is the name of another
state to immediately “jump” to
This interrupts the current path but, after the jump, Metatron
recalculates the path back to the original request, and continues
Metatron is a finite state machine: each state is a logically distinct
block of code

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 26 / 35



Automation

Metatron: State Graphs

The state graph describes the accessible states of single nodes, and
the allowable transitions between states (edges)
Each node accepts commands in the form of a state request

The shortest path from the current state to the requested state is
computed, and all the states in-between are executed
States may return a jump target, which is the name of another
state to immediately “jump” to
This interrupts the current path but, after the jump, Metatron
recalculates the path back to the original request, and continues
Metatron is a finite state machine: each state is a logically distinct
block of code

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 26 / 35



Automation

Metatron: State Graphs

The state graph describes the accessible states of single nodes, and
the allowable transitions between states (edges)
Each node accepts commands in the form of a state request
The shortest path from the current state to the requested state is
computed, and all the states in-between are executed

States may return a jump target, which is the name of another
state to immediately “jump” to
This interrupts the current path but, after the jump, Metatron
recalculates the path back to the original request, and continues
Metatron is a finite state machine: each state is a logically distinct
block of code

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 26 / 35



Automation

Metatron: State Graphs

The state graph describes the accessible states of single nodes, and
the allowable transitions between states (edges)
Each node accepts commands in the form of a state request
The shortest path from the current state to the requested state is
computed, and all the states in-between are executed
States may return a jump target, which is the name of another
state to immediately “jump” to
This interrupts the current path but, after the jump, Metatron
recalculates the path back to the original request, and continues

Metatron is a finite state machine: each state is a logically distinct
block of code

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 26 / 35



Automation

Metatron: State Graphs

The state graph describes the accessible states of single nodes, and
the allowable transitions between states (edges)
Each node accepts commands in the form of a state request
The shortest path from the current state to the requested state is
computed, and all the states in-between are executed
States may return a jump target, which is the name of another
state to immediately “jump” to
This interrupts the current path but, after the jump, Metatron
recalculates the path back to the original request, and continues
Metatron is a finite state machine: each state is a logically distinct
block of code

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 26 / 35



Automation

Metatron: States

Two state methods:
main() : executed once, immediately when entering a state
run() : executed in a loop, useful to check for state/nodes completion conditions

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 27 / 35



Automation

Metatron: States

If/when either method returns None (default) or False, the run() method is executed
If/when either method returns True the state completes and Metatron transitions to the
next state (edge transition)

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 27 / 35



Automation

Metatron: States

Exception: if this state was the requested state, the run() method will continue to
execute even if it returns True
This is useful for persistent checks (watchdogs and similar)

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 27 / 35



Automation

Metatron: States

Instead of True or False, either method can return the name of a state to initiate a jump
transition (to the DOWN state in this case)

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 27 / 35



Automation

Metatron GUI: medm

Main Lock Acquisition path
in the drop-down menu
the full list of states contains
intermediate states and
fancy configurations

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 28 / 35



Automation

Metatron Node Hierarchy

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 29 / 35



Automation

Metatron Node Example (1): Injection System Node

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 30 / 35



Automation

Metatron Node Example (2): Suspension Node

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 31 / 35



Automation

Metatron Node Example (3): Arm Locking Node

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 32 / 35



Automation

Metatron Node Example (4): CARM/DARM Locking Node

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 33 / 35



Automation

Metatron Node Example (5): Monitoring Node (1)

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 34 / 35



Automation

Metatron Node Example (5): Monitoring Node (2)

D. Bersanetti (INFN Genova) VIR-0405A-18 - 93rd JGW Seminar Jun 15th, 2018 35 / 35



Thank You!


	DC Readout Scheme
	Noise Subtraction
	Automation

