

Lock acquisition in Advanced Virgo: Guided Lock, SSFS and Automatic Alignment

Julia Casanueva for ISC team

VIR-0403A-18

Interferometer Sensing and Control

TARGET:

Bring the interferometer to its working point in a reliable and controlled way

PROBLEM:

- → Residual seismic noise (~1µm rms, ~1µm/s) moves the mirrors both angularly and longitudinally → working point of each DOF is crossed in a random way
- Active control is necessary to keep the ITF at its working point
 - → <u>4 longitudinal</u> DOFs (lengths) + <u>frequency stabilization</u> (laser)
 - → <u>16 angular DOFs</u> (Cavities, PR and BS)

Longitudinal DOFs (LSC)

Julia Casanueva

Longitudinal DOFs (LSC)

Anti-resonant

in the PRC

PRC (Ω_2) :

How do we build the error signals?

Arm cavities (Ω₁):
 → Anti-resonant in the cavities

Resonant in the PRC

Error signal at the Detection port: sidebands have to reach the Detection port even in Dark Fringe (carrier)

- → <u>Schnupp asymmetry</u>: $\Delta_s = l_{NI-} l_{WI} = 23$ cm
- Interference condition depends on frequency so the sidebands can "leak" to the Detection port:

NE

 $\Omega_1 = 6 \text{ MHz}$

 $\Omega_2 = 8 \text{ MHz}$

*l*_{north}

WE

WI

 l_{NI}

Detection port

BS

NI

 l_{west}

 l_{Wl}

 l_{PR}

PR

POP

Angular DOFs (ASC)

Angular control: error signals

- Mechanical modulation \rightarrow center the beam into the optics
 - Add a *tilting oscillation* to *each angular DOF* of *each mirror* at a different frequency $\omega_{\alpha}^{(DOF)}$
 - When the **optical axis is miscentered** there is a $\Delta L_{\alpha} \rightarrow$ frequencies $\omega_{\alpha}^{(DOF)}$ appear on the longitudinal correction

- The error signal is built by demodulating the longitudinal correction @ $\omega_{\alpha}^{(DOF)}$
- The input beam alignment impacts the power coupling inside the cavity \rightarrow error signal uses the P_{tr} by the cavity

Angular control: error signals

- Phase modulation → measure the spatial beam phase distribution (Ward's technique)
 - Reflected field contains the <u>beat note</u> between the <u>HOMs</u> produced and the <u>fundamental mode</u> (carrier and sidebands)
 - → Demodulation is needed to select the interesting term, Ω
 - → A special photodiode is needed since $H_0(x) \perp H_1(x)$ and integrating over the whole surface $\rightarrow 0$

Quadrant photodiode (QPD) is divided in sectors \rightarrow the difference between them gives us information on the 1^{st} order mode ONLY!

Angular control: error signals

- Phase modulation → measure the spatial beam phase distribution (Ward's technique)
 - → After demodulation ALL information is on one projection → angular DOFs are mixed!!
- Two QPDs are necessary:
 - Near Field → at the waist of the beam (plane-wave)
 - Far Field → radius of the beam converges to z (distance from the waist)

Longitudinal control strategy

- → The linear region of the error signals is very narrow, the mirrors position changes randomly and the DOFs are very coupled → their control can not be engaged simultaneously
- Misalign PR mirror → only 3 DOFs to control, <u>less coupling</u>.
- 1) Control the arm cavities independently
- 2) Control the Michelson in Half-Fringe
- 3) Align the PR mirror → all DOFs under control
- 4) Bring the Michelson towards dark fringe

 The whole interferometer can be seen as a compound FP cavity

The finesse of the PRC increases towards the Dark Fringe \rightarrow Variable Finesse

Angular control strategy

- → Alignment experiments slow drifts (~ tenths of minutes) → it is not so critical during the control acquisition
- Strategy adopted was:
 - Good initial alignment of the cavities → mechanical modulation
 - The PR mirror alignment is engaged as soon as it is aligned
 → critical due to the marginally stable nature of the PRC
 - The full angular control is not engaged until *Dark Fringe*!

Notice that the *shift of the input beam* is the only DOF that is *not controlled* since we do not have the proper actuators!

Power Recycling Cavity stability

An optical cavity is stable when it exists a beam that can resonate inside it.

→ Geometrical considerations only: $0 < g_1 g_2 < 1$

→ PRC is <u>marginally stable</u> \rightarrow **1** - $g_1g_2 \sim 0.19e-5$

WHAT DOES IT MEAN ?

- → HOMs resonate very close to the fundamental mode (degeneracy) → very sensitive to misalignments, mismatch and/or optical aberrations
- Very high coupling of HOMs inside the ITF Julia Casanueva
 93rd JGW

High modulation frequency

- → Arm cavities are very good "mode cleaner" for the carrier → the sidebands are only resonant on the PRC!
- → Simulations showed that for *typical misalignments*, the Optical Gain of the error signals decrease very fast (~80% for 0.5 urad) → feedback loop can not survive!
- Alignment of PR is "critical" to minimize the formation of HOMs BUT the alignment error signals are good only if the 1st HOMs are dominant!

Error signal is the beat note between the HOMs produced and the fundamental mode

SOLUTION: Add a *higher RF modulation frequency* (6x9 = 56MHz) that sees a *lower finesse* of the PRC and so it is *less sensitive to misalignment and mismatch*

Control acquisition sequence

Arm cavities' lock

- → Due to the high finesse of the cavities (450) \rightarrow dynamical effects
- → When the beam reaches a <u>moving mirror</u> \rightarrow **Doppler effect**
- It accumulates each round-trip, when the effect is <u>~δν</u> the EM field gets distorted → RINGING

V_{critical} is ~0.4 μm/s for AdV arm cavities *vs.* 1μm/s of residual motion

Effect on the error signal: <u>Wrong</u> zero-crossing / <u>multiple</u> zero-crossing / <u>asymmetrical</u> around working point...

Guided Lock

Measure the *resonance crossing velocity* **online** and apply a *single extended impulse* with the *maximum force* available in order to bring the cavity *back to the resonance* but with a *lower velocity*

To <u>estimate the velocity online</u> the method proposes to use the PDH's slope

 $v_{\text{meas}} = C \left(\frac{\partial}{\partial t} \frac{S_{\text{PDH}}}{S_{\text{DC}}} \right)^P$

X Needs calibration and a power law correction for high velocities!

Alternative for velocity estimation:

- → Time that the transmitted power takes to pass from <u>10% to 40% of</u> the cavity power on resonance
- → Simulations showed that:

Guided Lock

Real case of the control acquisition of the North arm cavity using Guided Lock $20^{\times 10^{-4}}$ Resonance P_{tr} [au] 10 0.93 0.95 0.96 0.92 0.94 0.97 0.98 0.91 0.99 <u>x 1</u>0⁻⁴ North Arm: signal [au] 5 **B7 6MHz** West Arm: Error -5 B8 6MHz 0.91 0.92 0.93 0.94 0.96 0.97 0.95 0.98 0.99 Correction [V] 10 0 Impulses -10 0.92 0.97 0.98 0.91 0.93 0.94 0.95 0.96 0.99 Time [s] Engagement of the linear Julia Casanueva 93rd JGW seminar - 15th June 2018 16 servo

Second Stage of Frequency Stabilization

 $\delta \Phi \propto (v \cdot \delta L + L \cdot \delta v)$

PARTICULARITIES:

1) Common Mode Rejection Factor: in practice there are asymmetries between the cavities (finesse, losses...)

→ extra frequency noise leaking so *better control is needed*

2) The bandwidth of this control needs to be <u>higher (up to kHz)</u> due to the laser contribution

→ *mirrors are not good actuators* (limited bandwidth)

3) Frequency noise couples to all the sensors (dominant noise) \rightarrow *pre-stabilization* of the laser is needed to control the ITF

CMRF and Mirrors TF

- Common Mode Rejection Factor: in practice there are asymmetries between the cavities (finesse, losses...) → extra frequency noise leaking so better control is needed
 - If the *ITF is perfectly symmetric* the common noise is completely canceled → No coupling to DARM!
 - If there is *asymmetries* the coupling to DARM is:

Frequency

noise

 $CMRF \cdot \tilde{f}$

Frequency pre-stabilization

SSFS

→ Second Stage of Frequency Stabilization (SSFS): replace the RFC and the IMC by the Arms → CARM error signal @ B4 56MHz

SSFS architecture

→ Second Stage of Frequency Stabilization (SSFS): replace the RFC and the IMC by the Arms → CARM error signal @ B4 56MHz

PR mirror alignment

 When we align the PR mirror all the powers in the ITF suffer a violent increase in a few seconds

93rd JGW seminar - 15th June 2018

MICH offset reduction

• Then we start **decreasing the offset** applied to the MICH error signal which is 0.5 @ half-fringe and is 0 @ Dark Fringe

Error signals normalization

• These **power changes** affect the performance of the control loops because the *slope of the PDH is proportional to* $P_{in} \rightarrow$ we need to compensate for them: **normalization**

Dark Fringe

• We **"jump" to the Dark Fringe** from 0.1 of MICH offset and then **hand-off the MICH error signal** to an RF one (B4 56MHz Q) simultaneously

Lock acquisition sequence

93rd JGW seminar - 15th June 2018

Automatic Alignment

- So far we had the PR tilt controlled using the Q2 8MHz quadrants and the arm cavities drift control (~20 mHz of UGF) using mechanical modulation
- In Dark Fringe we start using the quadrants, which allows us to close the loops in full bandwidth (~2 Hz of UGF):
 - **PR tilt** \rightarrow Q5_I 56MHz in full bandwidth
 - **BS tilt** \rightarrow Q5_Q 56MHz almost in full bandwidth
 - **PR translation** (input beam tilt) \rightarrow Q2 8MHz in drift control
 - **COMM+** \rightarrow Q5_DC in full bandwidth
 - **DIFF+** \rightarrow Q1p 56MHz in full bandwidth
 - COMM- / DIFF- → are substituted by a mechanical modulation on the end mirrors, which is used to center the optical axis on them

Automatic Alignment

- Alignment improves the stability of the powers in the ITF
- Plays a key role to improve the CMRF

Julia Casanueva

93rd JGW seminar - 15th June 2018