SEARCHES FOR THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND IN ADVANCED LIGO'S FIRST OBSERVING RUN

ANDREW MATAS KAGRA TELECON, JUNE 1, 2018

STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

A superposition of astrophysical and cosmological sources, including...

Unresolved astrophysical sources (binaries, supernovae, NS, ...) Superradiance, axion clouds ...

Early Universe (inflation, pre big-bang, ...)

Cosmic Strings

Cosmological Phase Transitions

CHARACTERIZING THE STOCHASTIC BACKGROUND

'Stochastic waveforms' are random time series, need to characterize the background statistically

Assuming background is statistically: **Gaussian isotropic unpolarized stationary** it is fully characterized by energy density

$$\Omega_{\rm GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d\log f}$$
$$\rho_{\rm GW} = \frac{c^2}{32\pi G} \langle \dot{h}_{ab}(t, \vec{x}) \dot{h}^{ab}(t, \vec{x}) \rangle$$

DATA ANALYSIS TECHNIQUE

Cross correlate the time series from 2+ detectors

The signal is long duration and non-deterministic

$$s_{1} = h_{1} + n_{1}$$

$$s_{2} = h_{2} + n_{2}$$
signal and noise
are uncorrelated

$$\langle s_{1}s_{2} \rangle = \langle h_{1}h_{2} \rangle + \langle h_{2}n_{1} \rangle + \langle h_{1}n_{2} \rangle + \langle n_{1}n_{2} \rangle$$
noise at 2 widely
signal
signal
noise at 2 widely
separated detectors is
uncorrelated

OVERLAP REDUCTION FUNCTION

Cross correlation of detector outputs is related to Ω_{GW}

$$\langle \tilde{s}_1(f)^* \tilde{s}_2(f) \rangle = \frac{3H_0^2}{20\pi^2} \delta(f - f') |f|^{-3} \Omega_{\rm GW}(|f|) \gamma(|f|)$$

Overlap reduction function

OPTIMAL FILTER

Allen and Romano, Phys.Rev. D59 (1999) 102001

Cross correlate detectors with filter function Q

$$Y = \int_{-\infty}^{\infty} \mathrm{d}f \tilde{s}_1^{\star}(f) \tilde{s}_2(f) \tilde{Q}(f)$$

$$\begin{split} \tilde{Q}(f) &= \lambda \frac{\gamma(f) \Omega(f) H_0^2}{f^3 P_1(f) P_2(f)} \qquad \lambda \text{ is chosen so } \left< Y \right> = \Omega_{\mathrm{GW}} \end{split}$$

Uncertainty (assuming ideal case that detector noise is stationary and Gaussian)

$$\sigma^2 \approx \frac{T}{4} \int_{-\infty}^{\infty} \mathrm{d}f P_1(|f|) P_2(|f|) |\tilde{Q}(f)|^2$$

SNR scales like sqrt(T)

$$\text{SNR} := \frac{\mu}{\sigma} \approx \frac{3H_0^2}{10\pi^2} \sqrt{T} \int_{-\infty}^{\infty} df \ |f|^{-3} \ \Omega_{\text{gw}}(|f|)}{\left[\int_{-\infty}^{\infty} df \ P_1(|f|) P_2(|f|)\right]^{1/2}}$$

COMBINING RESULTS FROM MULTIPLE DETECTORS

Allen and Romano, Phys.Rev. D59 (1999) 102001

Combine results from each detector pair
$$\,-Y_{IJ}$$

I,J label detectors used in the cross-correlation procedure described on previous slides

Optimal combination of cross-correlation statistic from N detectors:

$$Y_{\text{network}} = \sum_{I=1}^{N} \sum_{J=1}^{I-1} Y_{IJ} \qquad \sigma_{\text{network}}^{-2} = \sum_{I=1}^{N} \sum_{J=1}^{I-1} \sigma_{IJ}^{-2}$$

Scaling with number of detectors in network, assuming similar sensitivity and co-located detectors

$$\sigma_{\text{Network}} \sim N_{\text{pairs}}^{-1/2} \sim N^{-1}$$

In practice, this scaling breaks down due both to the fact that different detectors have different noise curves, and due to network geometry (different overlap reduction functions)

OVERLAP REDUCTION FUNCTION FOR {H,L,V,K} PAIRS

EFFECT OF NETWORK GEOMETRY ON SENSITIVITY

Assume a network of detectors with positions and orientations of H1,L1,V1,K1, with aLIGO design sensitivity noise curves

ANALYSIS OF LIGO'S FIRST OBSERVING RUN

We analyzed data at H1 and L1 from first observing run (O1) September 2015–January 2016

Hanford, Washington (H1)

Image credit: LIGO Lab

Livingston, Louisiana (L1)

ANALYSIS CUTS

- 1. We remove times where data is known to be corrupt (for example: interferometer not operational)
- 2. We remove time segments where noise is non-stationary

• • 192 s 192 s 192 s • • •
$$\left| \sigma_j - \frac{\sigma_{j+1} + \sigma_{j-1}}{2} \right| \le 0.2\sigma_j$$

 $\sigma_{j-1}(f) \quad \sigma_j(f) \quad \sigma_{j+1}(f)$

3. We remove frequency bins which display coherence with instrumental (auxiliary) channels

RESULTS

Upper limits for specific (fixed) values of α

Spectral index α	Frequency band with 99% sensitivity	Amplitude Ω_{α}	95% CL upper limit	Previous limits [33]
0	$20-85.8~\mathrm{Hz}$	$(4.4 \pm 5.9) \times 10^{-8}$	1.7×10^{-7}	$5.6 imes 10^{-6}$
2/3	$20-98.2~\mathrm{Hz}$	$(3.5 \pm 4.4) \times 10^{-8}$	$1.3 imes 10^{-7}$	-
3	$20-305~\mathrm{Hz}$	$(3.7 \pm 6.5) \times 10^{-9}$	$1.7 imes 10^{-8}$	$7.6 imes10^{-8}$

$$\Omega_{\rm GW}(f) = \Omega_{\alpha} \left(\frac{f}{f_{\rm ref}}\right)^{\alpha}$$

Upper limit improves by a factor of **33** over Initial LIGO for alpha=0, due to the large increase in sensitivity of Advanced LIGO

$$lpha=0$$
 Inflation, cosmic strings in our band...
 $lpha=2/3$ Binary inspiral (BBH, BHNS, BNS)

COMPARING MODELS AND OTHER BOUNDS

Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121101

Black box will be discussed in more detail in a few slides

2 sigma sensitivity curves are shown using power law integrated form

Indirect limits combine CMB and Big Bang Nucleosynthesis measurements

LISA projection described in Thrane and Romano 2013

Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121101

COMPACT BINARY BACKGROUND

Superposition of many BBH, BNS, BHNS systems Astrophysical foreground for cosmological models Contains information about astrophysics

REDSHIFT DEPENDENCE

 $R_m(z)$ assumed to follow star formation rate with time delay to account for difference between formation and merger

Most sources at 1<z<3

Meacher et al Phys.Rev.D 92, 063002 (2015)

SPECTRUM

Median total spectrum is roughly a factor of 1.6 larger than spectrum from BBH alone

Expect to dig into interesting parameter space in O3

Significant upgrades planned between O2 and O3, especially at low frequencies

	$\Omega_{\rm GW}(25~{ m Hz})$
BNS	$0.7^{+1.5}_{-0.6} \times 10^{-9}$
BBH	$1.1^{+1.2}_{-0.7} \times 10^{-9}$
Total	$1.8^{+2.7}_{-1.3} \times 10^{-9}$

DETECTABILITY

With median rates, expect to see signal with SNR=3 after 40 months of observation time (a few months into Design sensitivity)

"POPCORN" VS CONTINUOUS

BNS signals overlap in time domain

BBH signals are short and do not overlap

Abbott et al, 1710.05837

ANISOTROPIC BACKGROUND

$$\langle h_A^*(f,\hat{\Omega})h_{A'}(f',\hat{\Omega}')\rangle = \frac{1}{4}\mathcal{P}(f,\hat{\Omega})\delta(f-f')\delta_{AA'}\delta(\hat{\Omega},\hat{\Omega}')$$

Typically assume $\mathcal{P}(f, \hat{\Omega}) = \mathcal{P}(\hat{\Omega})\overline{H}(f)$ Expand $\mathcal{P}(\Theta)$ in a basis

$$\mathcal{P}(\Theta) = \mathcal{P}_{\alpha} \mathbf{e}_{\alpha}(\Theta)$$

 $\mathbf{e}_{\alpha}(\Theta) = \delta^2(\Theta, \Theta_{\alpha})$ Radiometer search point sources

$$\mathbf{e}_{\alpha}(\Theta) = Y_{\ell m}(\Theta)$$

Spherical harmonic search

Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121102

SPHERICAL HARMONIC: BROADBAND, ALL SKY SEARCH

						All-sky (broadband) Results				
						Max SNR	Max SNR (% <i>p</i> -value) Upper limit range			
α	Ω_{gw}	H(f)	f_{α} (Hz)	θ (deg)	l_{\max}	BBR	SHD	BBR ($\times 10^{-8}$)	SHD ($\times 10^{-8}$)	
0	constant	$\propto f^{-3}$	52.50	55	3	3.32(7)	2.69 (18)	10 - 56	2.5 - 7.6	
2/3	$\propto f^{2/3}$	$\propto f^{-7/3}$	65.75	44	4	3.31(12)	3.06 (11)	5.1 - 33	2.0-5.9	
3	$\propto f^3$	constant	256.50	11	16	3.43(47)	3.86 (11)	0.1 - 0.9	0.4-2.8	

 $\alpha = 0$

 $\alpha = 2/3$

 $\alpha = 3$

Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121102

About a factor of 60 improvement over Initial LIGO for alpha=0

UPPER LIMITS ON CL

Alternative representation used by CMB experiments

Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121102

RADIOMETER: BROADBAND, ALL SKY SEARCH

						All-sky (broadband) Results					
						$Max SNR (\% p-value) \qquad Upper limit range$			mit range		
α	$\Omega_{ m gw}$	H(f)	f_{lpha} (Hz)	θ (deg)	l_{\max}	BBR	SHD	BBR $(\times 10^{-8})$	SHD ($\times 10^{-8}$)		
0	constant	$\propto f^{-3}$	52.50	55	3	3.32(7)	2.69(18)	10-56	2.5-7.6		
2/3	$\propto f^{2/3}$	$\propto f^{-7/3}$	65.75	44	4	3.31 (12)	3.06(11)	5.1 - 33	2.0-5.9		
3	$\propto f^3$	$\operatorname{constant}$	256.50	11	16	3.43 (47)	3.86(11)	0.1 - 0.9	0.4 - 2.8		

About a factor of 8 improvement in flux over Initial LIGO for $\, lpha = 3 \,$

Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121102

 10^{3}

RADIOMETER: NARROWBAND RESULTS FOR SPECIAL DIRECT ONS Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121102

	Narrowband Radiometer Results								
_	Direction	Max SNR	p-value (%)	Frequency band (Hz)	Best UL ($\times 10^{-25}$)	Frequency band (Hz)			
_	Sco X-1	4.58	10	616 - 617	6.7	134 - 135			
	SN1987A	4.07	63	195 - 196	5.5	172 - 173			
_	Galactic Center 3.92		87	1347 - 1348	7.0	172 - 173			
	10 ⁻²² Sco	X-1	10-22	SN 1987A	10-22	Galactic Center			
Strain amplitude (h ₀)	10 ⁻²³		Strain amplitude (h ₀)		sensitivity (°) 10 ⁻²³ 10 ⁻²⁴	-1 g sensitivity			

Improves over Initial LIGO results by about a factor of 10 below 50 Hz and above 300 Hz and by about a factor of 2 on average across the band

10-25

ANGULAR RESOLUTION

Angular resolution limited by:

- * Diffraction limit
- * Blind directions -> a larger detector network reduces need to handle blind directions

 $\hat{\mathcal{P}'}_{\alpha} = (\Gamma'^{-1})_{\alpha\beta} X_{\beta}$

<u>Clean Map</u> What we want (GW power in every sky direction)

Inverse Fisher matrix / beam pattern matrix

<u>Dirty Map</u> Result of cross correlation

- Not truly invertible due to blind directions
- Typically this is regularized by SVN
- A detector network naturally regulates this matrix

Thrane et al, Phys.Rev. D80 (2009) 122002

REGULARIZATION OF FISHER MATRIX

More detectors => Reduced error on each component of map => Better recovery on all angular scales

This plot is phrased in terms of spherical harmonics, but a similar result applies to radiometer

Thrane et al, Phys.Rev. D80 (2009) 122002

NON-TENSOR POLARIZATIONS

6 polarizations for a symmetric 3x3 tensor

BACKGROUND FROM DIFFERENT POLARIZATIONS

Assume background from different polarizations is uncorrelated

$$\Omega_{\rm GW}(f) = \Omega^T(f) + \Omega^V(f) + \Omega^S(f)$$

Callister et al, Phys.Rev. X7 (2017) no.4, 041058

ILLUSTRATION OF BASIC IDEA

Can use differences in the overlap reduction functions to separate different polarizations

Callister et al, Phys.Rev. X7 (2017) no.4, 041058

DISTINGUISHING VECTOR AND SCALAR: WHERE A NETWORK HELPS

Recovery applied to injection of Scalar+Tensor background

Grey: PE with Advanced LIGO only (likes both V and S) Color: PE with Advanced LIGO+Virgo (correctly prefers S only)

Additional detectors can help distinguish polarizations

Callister et al, Phys.Rev. X7 (2017) no.4, 041058

O1 SEARCH RESULTS (HL ONLY, NO NETWORK)

Prior	$\log \Omega_0^T$	$\log \Omega_0^V$	$\log \Omega_0^S$	Ω_0^T	Ω_0^V	Ω_0^S
Log-Uniform	-7.25	-7.20	-6.96	$5.6 imes 10^{-8}$	$6.4 imes 10^{-8}$	1.1×10^{-7}
Uniform	-6.70	-6.59	-6.07	$2.0 imes 10^{-7}$	2.5×10^{-7}	8.4×10^{-7}

SUMMARY

- Stochastic background is a target for future detection
- Astrophysical background may be in reach by advanced detectors
- A detector network can help by
 - Improving sensitivity
 - Improving localization
 - Improving polarization measurements